
Package: celestial (via r-universe)
November 6, 2024

Type Package

Title Collection of Common Astronomical Conversion Routines and
Functions

Version 1.5.6

Date 2023-11-23

Author Aaron Robotham

Maintainer Aaron Robotham <aaron.robotham@uwa.edu.au>

Description Contains a number of common astronomy utility functions
for cosmology and angular coordinates.

License GPL-3

LazyData TRUE

Depends R (>= 3.00), RANN, NISTunits, pracma

Suggests plotrix, igraph

SystemRequirements C++11

LinkingTo Rcpp

NeedsCompilation yes

Repository https://asgr.r-universe.dev

RemoteUrl https://github.com/asgr/celestial

RemoteRef HEAD

RemoteSha 7bd45d83ce95a9b1d069f175d57aaffe431b5457

Contents
celestial-package . 2
car2sph . 3
cosdist . 4
cosgrow . 10
coshalo . 16
cosmap . 19
Cosmology Reference Sets . 22

1

2 celestial-package

cosNFW . 23
cosorb . 27
cosvar . 29
cosvol . 32
deg2dms . 33
deg2hms . 34
dms2deg . 35
eq2gal . 36
getpixscale . 37
hms2deg . 39
IAUID . 40
planck . 40
Sky Coordinate Matching . 45
skyarea . 50
skyproj . 52
sph2car . 54

Index 56

celestial-package Collection of Common Astronomical Conversion Routines and Func-
tions

Description

Various functions for converting between commonly used coordinate systems in astronomy and
making cosmological calculations.

Details

Package: celestial
Type: Package
Version: 1.5.6
Date: 2023-11-23
License: GPL-3
Depends: R (>= 3.00), RANN, NISTunits, pracma
Suggest: plotrix, igraph

There are a number of functions included, but the most useful for astronomy conversions are the
decimal degrees to DMS/HMS formats used at many telescopes: deg2dms, deg2hms, dms2deg,
hms2deg. It also contains functions for various cosmological calculations (i.e. distance, volume
and age for different cosmologies and redshifts).

Author(s)

Aaron Robotham

Maintainer: Aaron Robotham <aaron.robotham@uwa.edu.au>

car2sph 3

car2sph Transforms 3D cartesian coordinates to spherical coordinates

Description

Transforms 3D cartesian coordinates to spherical coordinates. The user can choose to return the
spherical coordinates in degrees or radians.

Usage

car2sph(x, y, z, deg = TRUE)

Arguments

x x values, can also contain a matrix of x, y and z (in that order).

y y values.

z z values

deg Should degrees be returned (default) or radians.

Details

This is a low level function that is used for plot transformations.

Value

A data.frame is returned containing the columns long (longitude), lat (latitude) and radius.

Author(s)

Aaron Robotham

See Also

sph2car

Examples

print(car2sph(x=1,y=1,z=0,deg=TRUE))

4 cosdist

cosdist Cosmological distance calculations

Description

These functions allow comoving, angular size and luminosity distances to be calculated for a given
redshift, it can also return look back time. They use curvature correctly, calculated internally using
the relation OmegaM+OmegaL+OmegaR+OmegaK=1, but by default they assume a flat Universe
where only OmegaM needs to be specified and OmegaR=0 (so no radiation pressure at any epoch).

Usage

cosdist(z=1, H0=100, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR, OmegaR=0, w0 = -1, wprime = 0,
age=FALSE, ref, error=FALSE)
cosdistz(z=1)
cosdistzeff(zref = 1, zem = 2)
cosdista(z=1)
cosdistCoDist(z=1, H0=100, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR, OmegaR=0, w0 = -1,
wprime = 0, ref)
cosdistLumDist(z=1, H0=100, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR, OmegaR=0, w0 = -1,
wprime = 0, ref)
cosdistAngDist(z=1, H0=100, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR, OmegaR=0, w0 = -1,
wprime = 0, ref)
cosdistAngDist12(z1=1, z2=2, H0=100, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR, OmegaR=0,
w0 = -1, wprime = 0, ref)
cosdistCoDistTran(z=1, H0=100, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR, OmegaR=0, w0 = -1,
wprime = 0, ref)
cosdistCoDist12ang(z1=1, z2=2, ang=0, H0=100, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR,
OmegaR=0, w0 = -1, wprime = 0, inunit='deg', ref)
cosdistLumDist12ang(z1=1, z2=2, ang=0, H0=100, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR,
OmegaR=0, w0 = -1, wprime = 0, inunit='deg', ref)
cosdistAngDist12ang(z1=1, z2=2, ang=0, H0=100, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR,
OmegaR=0, w0 = -1, wprime = 0, inunit='deg', ref)
cosdistzem12ang(z1=1, z2=2, ang=0, H0=100, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR,
OmegaR=0, w0 = -1, wprime = 0, inunit='deg', ref)
cosdistzeff12ang(z1=1, z2=2, ang=0, H0=100, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR,
OmegaR=0, w0 = -1, wprime = 0, inunit='deg', ref)
cosdistDistMod(z=1, H0=100, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR, OmegaR=0, w0 = -1,
wprime = 0, ref)
cosdistAngScale(z=1, H0=100, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR, OmegaR=0, w0 = -1,
wprime = 0, ref)
cosdistAngSize(z=1, Size=1, H0=100, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR, OmegaR=0, w0=-1,
wprime=0, Dim=1, Dist='Co', outunit='deg', ref)
cosdistAngArea(z=1, Size=1, H0=100, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR, OmegaR=0, w0=-1,
wprime=0, Dim=2, Dist='Co', outunit='deg2', ref)
cosdistCoVol(z=1, H0=100, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR, OmegaR=0, w0 = -1,
wprime = 0, ref)

cosdist 5

cosdistHubTime(H0=100)
cosdistUniAgeNow(z=1, H0=100, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR, OmegaR=0, w0 = -1,
wprime = 0, ref)
cosdistUniAgeAtz(z=1, H0=100, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR, OmegaR=0, w0 = -1,
wprime = 0, ref)
cosdistTravelTime(z=1, H0=100, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR, OmegaR=0, w0 = -1,
wprime = 0, ref)
cosdistRelError(z=1, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR, OmegaR=0, w0 = -1, wprime = 0,
ref)
cosdistCrit(z_lens=1, z_source=2, H0=100, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR, OmegaR=0,
w0 = -1, wprime = 0, ref)

Arguments

z Cosmological redshift, where z must be > -1 (can be a vector).

H0 Hubble constant as defined at z=0 (default is H0=100 (km/s)/Mpc).

OmegaM Omega Matter as defined at z=0 (default is 0.3).

OmegaL Omega Lambda as defined at z=0 (default is for a flat Universe with OmegaL =
1-OmegaM-OmegaR = 0.7).

OmegaR Omega Radiation as defined at z=0 (default is 0, but OmegaM/3400 is typical).

w0 The value of dark energy equation of state as defined at z=0. See cosgrow for
more details.

wprime The evolution term that governs how the dark energy equation of state evolves
with redshift. See cosgrow for more details.

age Flag for cosdist function to return age or not- this slows calculation, so is by
default turned off.

ref The name of a reference cosmology to use, one of 137 / 737 / Planck / Planck13
/ Planck15 / Planck18 / WMAP / WMAP9 / WMAP7 / WMAP5 / WMAP3 /
WMAP1 / Millennium / GiggleZ. Planck = Planck18 and WMAP = WMAP9.
The usage is case insensitive, so wmap9 is an allowed input. This overrides
any other settings for H0, OmegaM and OmegaL. If OmegaR is missing from
the reference set then it is inherited from the function input (0 by default). See
cosref for details.

error Flag for cosdist to calculate the relative error for distance/age values.

z1 Redshift for object 1, where z1 must be > -1 (can be a vector) and less than z2.

z2 Redshift for object 2, where z2 must be > -1 (can be a vector) and greater than
z1.

zref Redshift for the reference object, i.e. the object that we caste as the observer of
another object at zem.

zem Redshift for the emitting object, i.e. the object that we caste as being observed
by another object at zref.

z_lens Redshift, where z_lens must be > -1 (can be a vector) and z_lens < z_source.

z_source Redshift, where z_source must be > -1 (can be a vector) and z_lens < z_source.

ang The observed angular separation between object 1 and object 2 in degrees.

6 cosdist

Size The 1D size of the object (i.e. diameter or total length) in Mpc. Either comoving
or angular, as specified by ‘Dist’. For cosdistAngArea this is always taken to
be the diameter of either the projected or 3D object. The ‘Size’ specified should
be assuming the same cosmology as provided, so be careful with your ‘H0’!

Dim Specifies whether the object being considered is 1D (a line) 2D (e.g. a face on
galaxy) or 3D (e.g. dark matter halo). This makes a very small modification to
the geometry used (tan of 1D/2D and sin for 3D), but is only noticeable for large
structures at low redshifts.

Dist Determines the distance type of the specified ‘Size’, i.e. angular / physical
distances (Ang) or with respect to comoving distances (Co).

inunit The units of angular coordinate provided for ‘ang’. Allowed options are deg for
degrees, amin for arc minutes, asec for arc seconds, and rad for radians.

outunit For cosdistAngSize units of angular coordinate output. Allowed options are
deg for degress (default), amin for arc minutes, asec for arc seconds, and rad for
radians.
For cosdistAngArea units of angular area output. Allowed options are deg2
for square degrees (default), amin2 for square arc minutes, asec2 for square arc
seconds and rad2 or sr for steradians.

Details

Functions are largely based on D. W. Hogg et al. 1999 and Wright et al. 2006.

Negative value of z> -1 are allowed, which produces future predictions based on present day cos-
mology.

cosdistAngDist12 is only available for OmegaK>=0.

Value

cosdist Returns a data.frame (even if only 1 redshift if requested) with the following
columns:

z Requested redshift
a Universe expansion factor, as given by a=1/(1+z)
CoDist Line-of-sight (i.e. radial) comoving distance in units of Mpc
LumDist Luminosity distance in units of Mpc
AngDist Angular diameter distance in units of Mpc
CoDistTran Transverse comoving distance in units of Mpc
DistMod The distance modulus used where AbsMag = ApMag - DistMod, and DistMod = 5log10(LumDist)+25 in units of mag
AngScale Physical projected scale of an object at z in units of kpc/arcsec
CoVol Comoving volume of Universe within z in units of Gpc^3

If age=TRUE is set then additional age-related information is calculated for each z as extra columns:

HubTime Approximate Hubble age of the Universe in units of Gyrs
UniAgeNow Age of the Universe now in units of Gyrs

cosdist 7

UniAgeAtz Age of the Universe at the specified redshift (z) in units of Gyrs
TravelTime Light travel time from the specified redshift (AKA look back time) in units of Gyrs

If error=TRUE is set then the relative error for distance/age values is calculated for each z as an
extra column:

RelError Relative error of the distance/age integrals (this is the main source of error in the calculations)

The outputs of the standalone functions are:

cosdistz Returns the input redshift (only included for clarity).
cosdistzeff Returns the apparent redshift that the object at zref will observe the object at

zem for the Universe age that zref is observed to have now. This is given by
(1 + zem)/(1 + zref).

cosdista Returns the Universe expansion factor, as given by a = 1/(1 + z).
cosdistCoDist Returns the line-of-sight (i.e. radial) comoving distance in units of Mpc. For

a flat Universe (OmegaK=0) this is exactly the samething as the transverse co-
moving distance, and by extension it is also the proper motion distance.

cosdistLumDist Returns the luminosity distance in units of Mpc.
cosdistAngDist Returns the angular diameter distance in units of Mpc.
cosdistAngDist12

Returns the radial angular diameter distance separation in units of Mpc between
objects at ‘z1’ and ‘z2’ that have small angular separations on sky.

cosdistCoDistTran

Returns the transverse comoving distance in units of Mpc. This is equivilant to
the proper motion distance for all values of Universe curvature (OmegaK !=0),
and is the same thing as the line-of-sight comoving distance for a flat Universe
(OmegaK=0).

cosdistCoDist12ang

Returns the total comoving distance in units of Mpc between objects at ‘z1’ and
‘z2’ with a separation ‘ang’. This works for curved cosmologies (i.e. OmegaK!=0)
and for large radial and tangential separations. For small separations at a certain
value of z for both objects the result is very similar to cosdistCoDistTran(z)*sin(ang*pi/180).
This function was mostly extracted from Eqn 3.19 in Peacock (1999).

cosdistLumDist12ang

Returns the total luminosity distance in units of Mpc between objects at ‘z1’
and ‘z2’ with a separation ‘ang’. This is equal to cosdistCoDist12ang*(1+zeff),
where zeff is the apparent redshift that the object at z1 will observe the object at
z2 for the Universe age that z1 is observed to have now. See cosdistCoDist12ang
for details.

cosdistAngDist12ang

Returns the total angular diameter distance in units of Mpc between objects at
‘z1’ and ‘z2’ with a separation ‘ang’. This is equal to cosdistCoDist12ang/(1+zeff),
where zeff is the apparent redshift that the object at z1 will observe the object at
z2 for the Universe age that z1 is observed to have now. See cosdistCoDist12ang
for details.

8 cosdist

cosdistzem12ang

Returns the apparent redshift that the object at ‘z1’ would observe the object at
‘z2’ to be for our current Universe age. See cosdistCoDist12ang for details.

cosdistzeff12ang

Returns the apparent redshift that the object at ‘z1’ would observe the ob-
ject at ‘z2’ to be for the Universe age that z1 is observed to have now. See
cosdistCoDist12ang for details.

cosdistDistMod Returns the distance modulus used where AbsMag = ApMag - DistMod, and
DistMod = 5log10(LumDist)+25 in units of mag.

cosdistAngScale

Returns the physical projected scale of an object at z in units of kpc/arcsec.

cosdistAngSize Returns the angular size (length or diameter) of an object (by default in degrees).

cosdistAngArea Returns the angular area of an object (by default degrees^2), taking the specified
Size to be the diameter.

cosdistCoVol Returns the comoving volume of Universe within z in units of Gpc^3.

cosdistHubTime Returns the approximate Hubble age of the Universe in units of Gyrs.
cosdistUniAgeNow

Returns the age of the Universe now in units of Gyrs.
cosdistUniAgeAtz

Returns the age of the Universe at the specified redshift (z) in units of Gyrs.
cosdistTravelTime

Returns the light travel time from the specified redshift (AKA look back time)
in units of Gyrs.

cosdistRelError

Returns the relative error of the distance/age integrals (this is the main source of
error in the calculations).

cosdistCrit Returns the critical surface mass density, SigmaC (see also cosNFW).

Author(s)

Aaron Robotham

References

Based on the equations in:

Davis T.M. & Lineweaver, Charles H., 2004, PASA, 21, 97

Hogg D.W., 1999, arXiv, 9905116

Liske J., 2000, MNRAS, 319, 557L

Peacock J.A., 1999, Cosmological Physics, Cambridge University Press

Wright E.L., 2006, PASP, 118, 1711

See Also

cosvol, cosmap, cosgrow, cosref, cosNFW

cosdist 9

Examples

Not run:
cosdist(0.3,70,age=TRUE)
cosdist(0.3,70,age=TRUE,ref='Planck')
cosdistz(0.3)
cosdista(0.3)
cosdistCoDist(0.3,70)
cosdistLumDist(0.3,70)
cosdistAngDist(0.3,70)
cosdistAngDist12(0.3,0.5,70)
cosdistCoDistTran(0.3,70)
cosdistCoDist12ang(0,2,10)
cosdistDistMod(0.3,70)
cosdistAngScale(0.3,70)
cosdistAngSize(0.3,1,70)
cosdistCoVol(0.3,70)
cosdistHubTime(70)
cosdistUniAgeNow(0.3,70)
cosdistUniAgeAtz(0.3,70)
cosdistTravelTime(0.3,70)
cosdistRelError(0.3)
cosdistCrit(0.3,0.5,70)
cosdistzeff(1,2)
cosdistzem12ang(1,2)
cosdistzeff12ang(1,2)

#A check of the comoving separation between objects function:

cosdistCoDistTran(2,OmegaM = 0.3, OmegaL=1)*sin(pi/180)
cosdistCoDist12ang(2,2,ang=1,OmegaM=0.3,OmegaL=1)

#Very close, however cosdistCoDist12ang lets us go further:

cosdistCoDist12ang(1,2,ang=10,OmegaM=0.3,OmegaL=1)
cosdistCoDist12ang(2,2,ang=180,OmegaM=0.3,OmegaL=1)

#The second number should be be the same as:

cosdistCoDist(2,OmegaM=0.3,OmegaL=1)*2

#Example 1 by John Peacock for EDS Universe (answer should be nearly 3):

cosdistzem12ang(3,4,56.4,H0=100,OmegaM=1,OmegaL=0)

#Example 2 by John Peacock for EDS Universe (answer should be nearly 2995 Mpc/h):

cosdistCoDist12ang(3,4,56.4,H0=100,OmegaM=1,OmegaL=0)

#Example 3 by John Peacock for Milne Universe (answer should be nearly 5294 Mpc/h):

cosdistCoDist12ang(3,4,56,H0=100,OmegaM=0,OmegaL=0)

10 cosgrow

#Example 4 by John Peacock for Milne Universe (answer should be nearly 4.846):

cosdistzeff12ang(3,4,56,H0=100,OmegaM=0,OmegaL=0)

#Example 5 by John Peacock for Milne Universe (answer should be nearly 364 Mpc/h):

cosdistAngDist12ang(3,4,56,H0=100,OmegaM=0,OmegaL=0)

#Nice plot of distance estimates:

redshifts=seq(0,3,by=0.01)
plot(redshifts, cosdistCoDist(redshifts, ref='planck'), type='l', col='darkgreen',
xlab='Redshift / z', ylab='Distance / Mpc')
lines(redshifts, cosdistLumDist(redshifts, ref='planck'), col='red')
lines(redshifts, cosdistAngDist(redshifts, ref='planck'), col='blue')
legend('topleft', legend=c('Comoving Distance', 'Luminosity Distance', 'Angular Diameter Distance'),
col=c('darkgreen', 'red', 'blue'),lty=1)

plot(redshifts, cosdistTravelTime(redshifts, ref='planck'), type='l',
xlab='Redshift / z', ylab='Light travel time / Yrs')

#Actual time example (Figure 1 of Davis & Lineweaver 2004)
zseq=10^seq(-2,6,len=1e3)-1
dists=cosdistCoDist(zseq, ref='737')*0.00326
times=cosdistTravelTime(zseq, ref='737')
plot(dists, times, type='l', xlab='Comoving Distance / Glyr',
ylab='Time / Gyr')
abline(v=0, h=0, lty=1)
abline(h=c(min(times), max(times)), lty=2)
abline(v=c(min(dists), max(dists)), lty=2)

#Conformal time example (Figure 1 of Davis & Lineweaver 2004):
#Mpc to Glyr conversion is 0.00326

zseq=10^seq(-2,6,len=1e3)-1
dists=cosdistCoDist(zseq, ref='737')*0.00326
plot(dists, dists, type='l',
xlab='Comoving Distance / Glyr', ylab='Conformal Time / Gyr')
abline(v=0, h=0, lty=1)
abline(h=c(min(dists), max(dists)), lty=2)
abline(v=c(min(dists), max(dists)), lty=2)

End(Not run)

cosgrow Cosmological growth and evolution calculations

Description

These functions allow various properties of the expansion of the Universe to be calculated: e.g.
OmegaM/OmegaL/OmegaR/OmegaK for ay redshift, growth rate and growth factor, sigma8, and

cosgrow 11

RhoCrit and RhoMean. They use curvature correctly, calculated internally using the relation OmegaM+OmegaL+OmegaR+OmegaK=1,
but by default they assume a flat Universe where only OmegaM needs to be specified and OmegaR=0
(so no radiation pressure at any epoch).

Usage

cosgrow(z=1, H0=100, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR, OmegaR=0, w0 = -1, wprime = 0,
Sigma8=0.8, fSigma8=FALSE, Dist='Co',
Mass='Msun', ref)
cosgrowz(z = 1)
cosgrowa(z = 1)
cosgrowH(z=1, H0=100, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR, OmegaR=0, w0=-1, wprime=0,
ref)
cosgrowCoVel(z=1, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR, OmegaR=0, w0=-1,
wprime=0, ref)
cosgrowPecVel(z=1, zob=1)
cosgrowOmegaM(z=1, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR, OmegaR=0, w0=-1, wprime=0, ref)
cosgrowOmegaL(z=1, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR, OmegaR=0, w0=-1, wprime=0, ref)
cosgrowOmegaR(z=1, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR, OmegaR=0, w0=-1, wprime=0, ref)
cosgrowOmegaK(z=1, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR, OmegaR=0, w0=-1, wprime=0, ref)
cosgrowDecelq(z=1, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR, OmegaR=0, w0=-1, wprime=0, ref)
cosgrowEoSwDE(z=1, w0=-1, wprime=0)
cosgrowRhoDE(z=1,w0=-1, wprime=0, rhoDE=1)
cosgrowFactor(z=1, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR, OmegaR=0, w0=-1, wprime=0, ref)
cosgrowRate(z=1, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR, OmegaR=0, w0=-1, wprime=0,
Sigma8=0.8, fSigma8=FALSE, ref)
cosgrowSigma8(z=1, OmegaM=0.3,OmegaL=1-OmegaM-OmegaR, OmegaR=0, w0=-1, wprime=0,
Sigma8=0.8, ref)
cosgrowFactorApprox(z=1, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR, OmegaR=0, w0=-1, wprime=0,
ref)
cosgrowRateApprox(z=1, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR, OmegaR=0, w0=-1, wprime=0,
Sigma8=0.8, fSigma8=FALSE, ref)
cosgrowSigma8Approx(z=1, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR, OmegaR=0, w0=-1, wprime=0,
Sigma8=0.8, ref)
cosgrowRhoCrit(z=1, H0=100, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR, OmegaR=0, w0=-1,
wprime=0, Dist='Co', Mass='Msun', ref)
cosgrowRhoMean(z=1, H0=100, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR, OmegaR=0, w0=-1,
wprime=0, Dist='Co', Mass='Msun', ref)
cosgrowDeltaVir(z=1, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR, OmegaR=0, ref)

Arguments

z Cosmological redshift, where z must be > -1 (can be a vector).

zob Observed redshift, where z must be > -1 (can be a vector). Essentially a com-
bination of the cosmological redshift ‘z’ and the peculiar velocity of the objects
with respect to this.

H0 Hubble constant as defined at z=0 (default is H0=100 (km/s)/Mpc).

OmegaM Omega Matter as defined at z=0 (default is 0.3).

12 cosgrow

OmegaL Omega Lambda as defined at z=0 (default is for a flat Universe with OmegaL =
1-OmegaM-OmegaR = 0.7).

OmegaR Omega Radiation as defined at z=0 (default is 0, but ~OmegaM/3400 is typical).

w0 The value of dark energy equation of state as defined at z=0.

wprime The evolution term that governs how the dark energy equation of state evolves
with redshift.

rhoDE The z=0 reference energy density for dark energy.

Sigma8 The value of Sigma8 to use if fsigma8=TRUE (by default this is a reasonable
0.8 for simplicity).

fSigma8 Logical to express whether the growth rate of structure calculated by cosgrow,
cosgrowRate or cosgrowRateApprox is given as f*Sigma8 (TRUE) or simply f
(FALSE). This is useful for redshift space distortion comparisons (RSD), since
RSD strictly measures f*Sigma8.

Dist Determines the distance type, i.e. whether the Rho critical energy or mean mass
densities are calculated with respect to angular / physical distances (Ang), with
respect to comoving distances (Co) or with respect to physical metres (m).

Mass Determines the mass type, i.e. whether Rho critical energy or mean mass den-
sities are calculated with respect to solar masses (Msun) or with respect to kilo-
grams (kg).

ref The name of a reference cosmology to use, one of 137 / 737 / Planck / Planck13
/ Planck15 / Planck18 / WMAP / WMAP9 / WMAP7 / WMAP5 / WMAP3 /
WMAP1 / Millennium / GiggleZ. Planck = Planck18 and WMAP = WMAP9.
The usage is case insensitive, so wmap9 is an allowed input. See cosref for
details. This overrides any other settings for H0/ OmegaM and OmegaL. If
ref=137 or ref=737 no specific Sigma8 is assumed, instead Sigma8 is set to
whatever the input value is set to (by default this is 0.8).

Details

The above functions are heavily based on the equations in Hamilton A.J.S., 2001, MNRAS 322 419
and Lahav O., et al., 1991, MNRAS, 251, 136.

Negative value of z> -1 are allowed, which produces future predictions based on present day cos-
mology.

The approximation routines are generally accurate to sub 1 percent, and since they do not involve
numerical integration they are substantially faster when computing large grids of numbers, i.e. they
are recommended for plots, since the accuracy is sub the line width.

Value

cosgrow Returns a data.frame (even if only 1 redshift if requested) with the following
parameters evaluated at the respective redshift/s:

z Requested redshift
a Universe expansion factor, as given by a=1/(1+z)
H Hubble expansion rate in units of (km/s)/Mpc

cosgrow 13

CoVel Cosmological recession velocity in units of km/s
OmegaM Omega Matter
OmegaL Omega Lambda
OmegaR Omega Radiation
OmegaK Omega K(c)urvature
Decelq Traditional deceleration parameter q
Factor Exact growth factor (g, see cosgrowFactor below for details)
Rate Exact growth rate (f or f*Sigma8, see cosgrowRate below for details)
Sigma8 Power spectrum fluctuation amplitude on the scale 8 Mpc/z
RhoCrit Critical energy density of the Universe at z, where ρcrit = (3.H(z)2)/(8.π.G), in units of M⊙/Mpc3

RhoMean Mean mass density of the Universe at z, where ρmean = ρcrit.ΩM (z), in units of M⊙/Mpc3

The outputs of the standalone functions are:

cosgrowz Returns the input redshift (only included for clarity).

cosgrowa Returns the Universe expansion factor, as given by a=1/(1+z).

cosgrowH Returns the value of the Hubble expansion rate at z, in units of km/s/Mpc.

cosgrowCoVel Returns the value of the cosmological recession velocity of the object in units of
km/s.

cosgrowPecVel Returns the value of the peculiar velocity of the object in units of km/s.

cosgrowOmegaM Returns the value of Omega Matter at z.

cosgrowOmegaL Returns the value of Omega Lambda at z.

cosgrowOmegaR Returns the value of Omega Radiation at z.

cosgrowOmegaK Returns the value of Omega K(c)urvature at z.

cosgrowDecelq Returns the traditional deceleration parameter q, given by q=OmegaM/2+Omegar-
OmegaL.

cosgrowEoSwDE Returns w for the dark energy equation of state, where P = w.ρDE .c
2 and

w = w0 + 2.w′.(1− 1/(1 + z)), as described in Wright (2006).

cosgrowRhoDE Returns the energy density for dark energy, given by ρDE .e
−6.w′.(1−1/(1+z))/(1+

z)−(3+3.w0+6.w′), as described in Wright (2006)..

cosgrowFactor Returns the exact value of the growth factor (typically referred to as ’g’ in the
astronomy literature), at z. This is defined such that it equals 1 at z=Inf and is
less than 1 at lower z.

cosgrowRate Returns either the true (typically referred to as ’f’ in the astronomy literature) or
RSD type (f*Sigma8) value of the growth rate of structure, at z. This is defined
such that it equals 1 at z=Inf and is less than 1 at lower z.

cosgrowSigma8 Returns the power spectrum fluctuation amplitude on the scale 8 Mpc/z at z, and
is unitless.

cosgrowFactorApprox

Returns the approximate value of the growth factor (typically referred to as ’g’
in the astronomy literature), at z. This is defined such that it equals 1 at z=Inf
and is less than 1 at lower z.

14 cosgrow

cosgrowRateApprox

Returns either the approximate true (typically referred to as ’f’ in the astron-
omy literature) or approximate RSD type (f*Sigma8) value of the growth rate of
structure, at z. This is defined such that it equals 1 at z=Inf and is less than 1 at
lower z.

cosgrowSigma8Approx

Returns the approximate power spectrum fluctuation amplitude on the scale 8
Mpc/z at z, and is unitless.

cosgrowRhoCrit Returns the critical energy density of the Universe at z, where ρcrit = (3.H(z)2)/(8.π.G),
in units of M⊙/Mpc3.

cosgrowRhoMean Returns the mean mass density of the Universe at z, where ρmean = ρcrit.ΩM (z),
in units of M⊙/Mpc3.

cosgrowDeltaVir

Returns the delta-critical virial radius overdensity criterion for a range of flat
Universes with varying OmegaM. Taken from Eqn. 6 of Bryan & Norman
(1998).

Note

The difference between RhoCrit and RhoMean at z=0 is simply RhoMean=RhoCrit*OmegaM. Cor-
rected for 1/(1+z)^3 RhoMean stays constant with redshift (as it should- to first order we do not gain
or lose mass within a comoving volume).

The growth rate and growth factor does not make use of OmegaR in the cosgrow function, hence
OmegaR cannot be provided in the individual functions. This is because correctly accounting for
the effect of radiation pressure before the surface of last scattering (z~1100) on the growth rate of
structure is highly complex, and beyond the scope of this package. In the case of cosgrow, even if
OmegaR is specified it is, in effect, set to zero when making growth factor and rate calculations.

The evolution of the dark matter equation of state (w) is parameterised as described in Wright
(2006).

It is important to remember that H is in physical units for both the numerator and denominator
(i.e. ’proper’ at a given redshift, so the units are km/s / pMpc). To ask the question "is the Universe
accelerating?" is to really ask "is the expansion factor accelerating?". This requires the denominator
to be in comoving units (so rescaling for proper distances today) and measuring the differential with
time or redshift. You will only find an accelerating Universe when dividing H(z)/(1+z)! See the
examples to see how we can find this location, and that it is consistent with the start of acceleration
calculated from the decleration parameter (q) directly.

Author(s)

Aaron Robotham

References

Based on the equations in:

Bryan & Norman, 1998, ApJ, 495, 80

Davis T.M. & Lineweaver, Charles H., 2004, PASA, 21, 97

Davis T.M. & Scrimgeour M.I., 2014, MNRAS, 442, 1117

cosgrow 15

Hamilton A.J.S., 2001, MNRAS 322 419

Lahav O., et al., 1991, MNRAS, 251, 136

Peacock J.A., 1999, Cosmological Physics, Cambridge University Press

Wright E.L., 2006, PASP, 118, 1711

See Also

cosvol, cosmap, cosdist, cosref, coshalo

Examples

cosgrow(0.3)
cosgrow(0.3,ref='Planck')
cosgrowz(0.3)
cosgrowa(0.3)
cosgrowH(0.3)
cosgrowCoVel(0.3)
cosgrowPecVel(0.3,0.31)
cosgrowOmegaM(0.3)
cosgrowOmegaL(0.3)
cosgrowOmegaK(0.3)
sum(cosgrowOmegaM(0.3)+cosgrowOmegaL(0.3)+cosgrowOmegaK(0.3)) #Still 1.
cosgrowDecelq(0.3)
cosgrowEoSwDE(0.3)
cosgrowFactor(0.3)
cosgrowFactorApprox(0.3) #Approximation better than 1% for reasonable cosmologies.
cosgrowRate(0.3)
cosgrowRateApprox(0.3) #Approximation better than 1% for reasonable cosmologies.
cosgrowRhoCrit(0.3)
cosgrowRhoMean(0.3)
cosgrowRhoMean(0)-cosgrowRhoMean(2,Dist='Ang')/(1+2)^3 #Mass is conserved in co-vol
cosgrowRhoMean(0)-cosgrowRhoMean(10,Dist='Co') #Mass is conserved in co-vol

Various recessional velocities (see Figure 2 of Davis & Lineweaver 2004):

plot(10^seq(-1,4,by=0.01), cosgrowCoVel(10^seq(-1,4,by=0.01), ref='planck')
/299792.458, type='l', log='x', xlab='z', ylab='Cosmological Recession Velocity / c')
lines(10^seq(-1,4,by=0.01), cosgrowPecVel(0,10^seq(-1,4,by=0.01))/299792.458, col='red')
lines(10^seq(-1,4,by=0.01), 10^seq(-1,4,by=0.01), col='blue')
abline(h=1,v=1.5,lty=2)
legend('topleft', legend=c('GR', 'SR', 'Approx (cz)', 'Superluminal'), lty=c(1,1,1,2),
col=c('black','red','blue','black'))

Comparison of the various energy densities that make up the Universe for Planck 2013:

plot(cosdistUniAgeAtz(10^seq(-3,4.9,by=0.1), ref='Planck')*1e9,
cosgrowRhoCrit(10^seq(-3,4.9,by=0.1), ref='Planck', Dist='m', Mass='kg')*
cosgrowOmegaR(10^seq(-3,4.9,by=0.1), ref='Planck'), type='l',log='xy',
xlab='Years since Universe formed', ylab=expression('Energy Density'*(kg/m^3)))

lines(cosdistUniAgeAtz(10^seq(-3,4.9,by=0.1), ref='Planck')*1e9,

16 coshalo

cosgrowRhoCrit(10^seq(-3,4.9,by=0.1), ref='Planck', Dist='m', Mass='kg')*
cosgrowOmegaM(10^seq(-3,4.9,by=0.1), ref='Planck'), col='red')

lines(cosdistUniAgeAtz(10^seq(-3,4.9,by=0.1), ref='Planck')*1e9,
cosgrowRhoCrit(10^seq(-3,4.9,by=0.1), ref='Planck', Dist='m', Mass='kg')*
cosgrowOmegaL(10^seq(-3,4.9,by=0.1), ref='Planck'), col='blue')

abline(v=cosdistUniAgeAtz(0.33,ref='Planck')*1e9,lty=2) # Matter = Vacuum
abline(v=cosdistUniAgeAtz(3391,ref='Planck')*1e9,lty=2) # Matter = Radiation

legend('topright', legend=c('Radiation Energy Density', 'Matter Energy Density',
'Vacuum Energy Density'), lty=1, col=c('black','red','blue'))

Where's the acceleration?
plot(seq(0,2,len=1e3),cosgrowH(seq(0,2,len=1e3)),type='l',xlab='z',
ylab='H(z) / km/s / pMpc')
There it is!
plot(seq(0,2,len=1e3),cosgrowH(seq(0,2,len=1e3))/(1+seq(0,2,len=1e3)),
type='l',xlab='z',ylab='H(z) / km/s / cMpc')
#When does it start accelerating?
accel.loc=which.min(abs(cosgrowDecelq(seq(0,2,len=1e3))))
abline(v=seq(0,2,len=1e3)[accel.loc],lty=2)

coshalo Virial halo conversion functions

Description

All 6 Virial parameter conversion functions. Each can map precisely to the other as a one paramter
function.

Usage

coshaloMvirToSigma(Mvir=1e+12, z=0, H0=100, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR,
OmegaR=0, Rho='crit', Dist='Co', DeltaVir=200, Munit=1, Lunit=1e6, Vunit=1e3, Dim=3, ref)
coshaloSigmaToMvir(Sigma=230, z=0, H0=100, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR,
OmegaR=0, Rho='crit', Dist='Co', DeltaVir=200, Munit=1, Lunit=1e6, Vunit=1e3, Dim=3, ref)
coshaloMvirToRvir(Mvir=1e12, z=0, H0=100, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR,
OmegaR=0, Rho='crit', Dist='Co', DeltaVir=200, Munit=1, Lunit=1e6, Vunit=1e3, Dim=3, ref)
coshaloRvirToMvir(Rvir=162.635, z=0, H0=100, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR,
OmegaR=0, Rho='crit', Dist='Co', DeltaVir=200, Munit=1, Lunit=1e6, Vunit=1e3, Dim=3, ref)
coshaloSigmaToRvir(Sigma=230, z=0, H0=100, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR,
OmegaR=0, Rho='crit', Dist='Co', DeltaVir=200, Munit=1, Lunit=1e6, Vunit=1e3, Dim=3, ref)
coshaloRvirToSigma(Rvir=162.635, z=0, H0=100, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR,
OmegaR=0, Rho='crit', Dist='Co', DeltaVir=200, Munit=1, Lunit=1e6, Vunit=1e3, Dim=3, ref)
coshaloSigmaToTvir(Sigma=230, Vunit=1e3, Tunit='K', Type='halo', Dim=3)

coshalo 17

Arguments

Mvir Mass within virial radius in units of ’Munit’.
Sigma Velocity dispersion (3D) within virial radius in units of ’Vunit’. For coshaloSig-

maToTvir the Sigma input should be the virial Sigma which can be found by
setting DeltaVir=’get’ in the the other coshalo functions.

Rvir Virial radius (3D) in units of ’Lunit’.
z Cosmological redshift, where z must be > -1 (can be a vector).
H0 Hubble constant as defined at z=0 (default is H0=100 (km/s)/Mpc).
OmegaM Omega Matter as defined at z=0 (default is 0.3).
OmegaL Omega Lambda as defined at z=0 (default is for a flat Universe with OmegaL =

1-OmegaM = 0.7).
OmegaR Omega Radiation as defined at z=0 (default is 0, but OmegaM/3400 is typical).
Rho Set whether the critical energy density is used (crit) or the mean mass density

(mean).
Dist Determines the distance type, i.e. whether the Rho critical energy or mean mass

densities are calculated with respect to angular / physical distances (Ang) or
with respect to comoving distances (Co). In effect this means Rvir values are
either angular / physical (Ang) or comoving (Co). It does not affect Mvir <->
Sigma conversions, but does affect Mvir <-> Rvir and Rvir <-> Sigma.

DeltaVir Desired overdensity of the halo with respect to Rho. If set to ’get’ it will estimate
the required DeltaVir for a virial collapse using the cosgrowDeltaVir function.

Munit Base mass unit in multiples of Msun.
Lunit Base length unit in multiples of parsecs.
Vunit Base velocity unit in multiples of m/s.
Type Specify the ’halo’ or ’gas’ temperature to be computed.
Tunit Specify the output temperature to be Kelvin (’K’), ’eV’ or ’keV’.
Dim The dimensional type for the halo (either the 2 or 3). 3 (default) means quantities

are intrinsic 3D values. 2 means quantities are for projected systems (i.e. radius
and velocity dispersion are compressed). From comparisons to simulations (so
NFW, c~5 halos) Rvir[proj]=Rvir[3D]/1.37 and Sigma[proj]=Sigma[3D]/sqrt(3).
The former has dependence on the halo profile (so is approximate), whereas the
latter is a dimensionality argument that should hold for any virialised system.
Note that for projected systems Sigma is measured along one dimension: the
line-of-site.

ref The name of a reference cosmology to use, one of 137 / 737 / Planck / Planck13
/ Planck15 / Planck18 / WMAP / WMAP9 / WMAP7 / WMAP5 / WMAP3 /
WMAP1 / Millennium / GiggleZ. Planck = Planck18 and WMAP = WMAP9.
The usage is case insensitive, so wmap9 is an allowed input. See cosref for
details. This overrides any other settings for H0/ OmegaM and OmegaL.

Details

These functions allow for various analytic conversions between the 3 major properties related to
virial radius: the mass, velocity dispresion and size. The default properties calculate properties for
1e12 Msun halos and assume masses in Msun, velocities in km/s and distances in Kpc.

18 coshalo

Value
coshaloMvirToSigma

Outputs approximate velocity dispersion (in units of Vunit) given mass (this is
exactly the escape velocity at Rvir).

coshaloSigmaToMvir

Outputs mass (in units of Munit) given velocity dispersion.
coshaloMvirToRvir

Outputs radius (in units of Lunit) given mass.
coshaloRvirToMvir

Outputs mass (in units of Munit) given radius.
coshaloSigmaToRvir

Outputs radius (in units of Lunit) given velocity dispersion.
coshaloRvirToSigma

Outputs approximate velocity dispersion (in units of Vunit) given radius (this is
exactly the escape velocity at Rvir).

coshaloSigmaToTvir

Output temperture (in units of Tunit) given velocity dispersion. Based on Eqns.
3/7/8/9 of Bryan & Norman (1998).

Author(s)

Aaron Robotham, Chris Power

References

coshaloSigmaToTvir based on the equations in:

Bryan & Norman, 1998, ApJ, 495, 80

See Also

cosvol, cosmap, cosdist, cosgrow, cosNFW

Examples

coshaloMvirToSigma(1e13) # Velocity in km/s
coshaloMvirToSigma(1e13, Vunit=1) # Velocity in m/s
coshaloSigmaToMvir(coshaloMvirToSigma(1e13, Vunit=1),Vunit=1)
coshaloMvirToRvir(1e13) #Radius in kpc
coshaloSigmaToRvir(coshaloMvirToSigma(1e13, Vunit=1),Vunit=1)

#Some sanity checks

rho_crit200=cosgrowRhoCrit(z=0)*200 #200 times rho critical at z=0
rho_mean200=cosgrowRhoMean(z=0)*200 #200 times rho mean at z=0
#For a 10^12 Msun/h halo, the radius in Mpc/h where the contained density equals rho_crit*200
rad_crit200=(1e12/rho_crit200*3/4/pi)^(1/3)
coshaloMvirToRvir(1e12,Lunit=1e6)-rad_crit200 # ~0 as expected
#For a 10^12 Msun/h halo, the radius in Mpc/h where the contained density equals rho_crit*200
rad_mean200=(1e12/rho_mean200*3/4/pi)^(1/3) # ~0 as expected
coshaloMvirToRvir(1e12,Lunit=1e6,Rho='mean')-rad_mean200

cosmap 19

cosmap Cosmological Mapping Functions

Description

Functions for mapping from one arbitrary cosmological parameter to another. This includes the
provision of a generic interpolation function and another exact value lookup.

Usage

cosmapval(val=50, cosparam="CoVol", H0=100, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR, OmegaR=0,
w0=-1, wprime=0, Sigma8=0.8, fSigma8=FALSE, zrange=c(-0.99,100), res=100, iter=8,
out='cos', degen='lo', ref)
cosmapfunc(cosparamx="CoVol", cosparamy="z", H0=100, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR,
OmegaR=0, w0=-1, wprime=0, Sigma8=0.8, fSigma8=FALSE, zrange=c(0,20), step='z', res=100,
degen='lo', ref)

Arguments

val The value/s to be mapped from parameter cosparamx to parameter cosparamy
(this can be a vector or a single number).

cosparam Cosmological parameter, must be one of: z, a, CoDist, LumDist, CoDistTran,
DistMod, AngScale, CoVol, UniAgeAtz, TravelTime (see cosdist help for fur-
ther description of these) H, CoVel, OmegaM, OmegaL, OmegaK, Factor, Rate,
RhoCrit (see cosgrow help for further description of these). Note that AngDist
and AngSize are not an option for cosparam due to degenerate redshift solutions
causing problems with the approxfun mapping.

cosparamx Cosmological parameter, must be one of: z, a, CoDist, LumDist, CoDistTran,
DistMod, AngScale, CoVol, UniAgeAtz, TravelTime (see cosdist help for fur-
ther description of these) H, CoVel, OmegaM, OmegaL, OmegaK, Factor, Rate,
RhoCrit (see cosgrow help for further description of these). Note that AngDist
and AngSize are not an option for cosparamx due to degenerate redshift solu-
tions causing problems with the approxfun mapping.

cosparamy Cosmological parameter, must be one of: z, a, CoDist, LumDist, AngDist,
CoDistTran, DistMod, AngScale, CoVol, UniAgeAtz, TravelTime (see cosdist
help for further description of these) H, CoVel, OmegaM, OmegaL, OmegaK,
Factor, Rate, RhoCrit (see cosgrow help for further description of these).

H0 Hubble constant as defined at z=0 (default is H0=100 (km/s)/Mpc).

OmegaM Omega Matter as defined at z=0 (default is 0.3).

OmegaL Omega Lambda as defined at z=0 (default is for a flat Universe with OmegaL =
1-OmegaM = 0.7).

OmegaR Omega Radiation as defined at z=0 (default is 0, but OmegaM/3400 is typical).

w0 The value of dark energy equation of state as defined at z=0. See cosgrow for
more details.

20 cosmap

wprime The evolution term that governs how the dark energy equation of state evolves
with redshift. See cosgrow for more details.

Sigma8 The value of Sigma8 as defined at z=0 to use if fsigma8=TRUE (by default this
is a reasonable 0.8 for simplicity).

fSigma8 Logical to express whether the growth rate of structure calculated by cosgrow,
cosgrowRate or cosgrowRateApprox is given as f*Sigma8 (TRUE) or simply f
(FALSE). This is useful for redshift space distortion comparisons (RSD), since
RSD strictly measures f*Sigma8.

zrange Lower and upper z limits that the approxfun mapping is generated over (increase
range if default is not sufficient, and decrease if it is wasteful, i.e. the possible
redshift window is known to be quite narrow).

step The type of stepping used. Allowed values are ’z’ (uniform stepping in z), ’logz’
(uniform stepping in log10(1+z) and expansion factor ’a’ (uniform stepping in
a=1/(1+z)). Default is z. For mappings using time (UniAgeNow, UniAgeAtz,
TravelTime) or comoving quantities (CoDist, CoDistTran, CoVol) or distance
modulus (DistMod) ’a’ or ’logz’ map the numeric range more uniformly. This is
because a and log10(1+z) are approximately linear in light travel time (positive
and negative correlation respectively), and typically they have better behaviour
than stepping uniformly in z directly.

res The resolution of steps. Larger numbers will be more accurate, but will be
slower to compute.

iter The number of iterations to make when calculating the exact location of a given
cosmological parameter when using cosmapval.

out Either out=’cos’, in which case the output is a data.frame containing the output
of cosdist and cosgrow for the specified input vaue, or out=’z’, in which case
the output is a vector of the corresponding redshift (z) values.

degen In cases where solutions are degenerate (multiple y solutions for a single x), this
specifies whether to calculate the lower y solution (degen=’lo’), or the higher y
solutions (degen=’hi’).

ref The name of a reference cosmology to use, one of 137 / 737 / Planck / Planck13
/ Planck15 / Planck18 / WMAP / WMAP9 / WMAP7 / WMAP5 / WMAP3 /
WMAP1 / Millennium / GiggleZ. Planck = Planck18 and WMAP = WMAP9.
The usage is case insensitive, so wmap9 is an allowed input. See cosref for
details. This overrides any other settings for H0/ OmegaM and OmegaL. If
ref=137 or ref=737 no specific Sigma8 is assumed, instead Sigma8 is set to
whatever the input value is set to (by default this is 0.8).

Details

The default zrange and res should be sufficient for most reasonable cosmologies if the approximate
redshift location of the region to be mapped is entirely unknown.

Predictions into the future are possible if val is set to negative (distance and volume parameters)
or below their present day value (age and growth parameters). However, many potential values are
outside of the asymptotic limits, e.g. using the default 737 cosmology H is tending to 83.666, i.e. it
will fail if you request H=83 but work if your resuest H=84.

cosmap 21

The default res and iter for cosmapval is appropriate for most mappings with -0.99 < z < 100 using
a fiducial 737 cosmology. If this proves insufficient (this should be obvious from error column) then
increase both of these. Overall accuracy goes as res^iter.

Value

If out=’cos’, cosmapval contains the concatenation of the cosdist (with age=TRUE and error=TRUE)
and cosgrow functions for parameter ’cosparam’ at value ’val’. The ’z’ and ’a’ columns are only in-
cluded once (from the output of cosdist). See cosdist and cosgrow for information on the cosdist
and cosgrow outputs. If out=’z’, then cosmapval merely returns the corresponding redshifts.

The cosmapval output (when out=’cos’) includes an additional final column named ’MapError’
which gives the approximate relative error of the values returned compared to the desired lookup
location. Smaller is obviously better, but at the cost of computational time.

cosmapfunc uses base R approxfun to map cosparamx onto cosparamy between zrange[1] and
zrange[2] in uniform steps of expansion factor (a=1/(1+z)). cosmofunc returns the output func-
tion created by approxfun.

Author(s)

Aaron Robotham

References

Based on the equations in:

Hogg D.W., 1999, arXiv, 9905116

Wright E.L., 2006, PASP, 118, 1711

See Also

cosdist, cosvol, cosgrow

Examples

Not run:
tempfunc=cosmapfunc('CoVol', 'UniAgeAtz')
tempfunc(50)

cosmapval(50:60, 'CoVol')

#A future prediction:

cosmapval(59, 'H', H0=70)

End(Not run)

22 Cosmology Reference Sets

Cosmology Reference Sets

Cosmology parameter data included in celestial package.

Description

cosref: Cosmology H0 / OmegaM / OmegaL / OmegaR (via OmegaM/zeq) and Sigma8 parameters
taken from Planck (13/15/18), WMAP (1/3/5/9), Millennium Simulation and GiggleZ. Not all of
these exist for each source, so NA values are used in these cases.

For Planck we use the second column of the main cosmology table, which does no use external
data.

Usage

data(cosref)

Details

The included data is a table of the following cosmological parameters:

Ref H0 OmegaM OmegaL OmegaR Sigma8
737 70.0 0.300 0.700 NA NA
137 100.0 0.300 0.700 NA NA
Planck 68.4 0.301 0.699 8.985075e-05 0.793
Planck18 68.4 0.301 0.699 8.985075e-05 0.793
Planck15 67.8 0.308 0.692 9.150327e-05 0.815
Planck13 67.3 0.315 0.685 9.289295e-05 0.829
WMAP 69.7 0.288 0.712 8.780488e-05 0.817
WMAP9 69.7 0.288 0.712 8.780488e-05 0.817
WMAP7 70.4 0.275 0.725 8.569648e-05 0.816
WMAP5 70.5 0.274 0.726 8.45679e-05 0.812
WMAP3 70.4 0.268 0.732 NA 0.776
WMAP1 72.0 0.290 0.710 NA 0.900
Millennium 73.0 0.250 0.750 NA 0.900
GiggleZ 70.5 0.273 0.727 NA 0.812

Author(s)

Aaron Robotham

References

Name Full Reference arXiv Refence
737 Simplified concordance cosomology NA
137 Simplified concordance cosomology NA

cosNFW 23

Planck 18 Planck Collaboration, 2018, arXiv, 1807.06209 arxiv:1807.06209
Planck 15 Planck Collaboration, 2015, A&A, 594, 13 arxiv:1502.01589
Planck 13 Planck Collaboration, 2014, A&A, 571, 16 arXiv:1303.5076v3
WMAP9 Hinshaw G., et al., 2013, ApJS, 208, 19 arXiv:1212.5226v3
WMAP7 Komatsu E., et al., 2010, ApJS, 192, 18 arXiv:1001.4538v3
WMAP5 Komatsu E., et al., 2009, ApJS, 180, 306 arXiv:0803.0547v2
WMAP3 Spergel D. N., et al., 2007, ApJS, 170, 377 arXiv:astro-ph/0603449v2
WMAP1 Spergel D. N., et al., 2003, ApJS, 148, 175 arXiv:astro-ph/0302209v3
Millennium Springel V., et al., 2005, Nature, 435, 629 arXiv:astro-ph/0504097v2
GiggleZ Poole G. B., et al., 2015, MNRAS, 449, 1454 arXiv:1407.0390v1

See Also

cosvol, cosmap, cosdist, cosgrow

Examples

data(cosref)
cosref[cosref[,'Ref']=='Planck',]

cosNFW Navarro Frenk and White profile

Description

Density and total mass values for Navaro Frenk and White (NFW) profiles

Usage

cosNFW(Rad=0, Rho0=2.412e15, Rs=0.03253)
cosNFWmass_c(Rho0=2.412e15, Rs=0.03253, c=5, Munit = 1, Lunit = 1e+06)
cosNFWmass_Rmax(Rho0=2.412e15, Rs=0.03253, Rmax=0.16265, Munit = 1, Lunit = 1e+06)
cosNFWvcirc(Rad = 0.16264, Mvir = 1e+12, c = 5, f = Inf, z = 0, H0 = 100, OmegaM = 0.3,
OmegaL = 1 - OmegaM - OmegaR, OmegaR = 0, Rho = "crit", Dist = "Co", DeltaVir = 200,
Munit = 1, Lunit = 1e+06, Vunit = 1000, ref)
cosNFWvesc(Rad = 0.16264, Mvir = 1e+12, c = 5, f = Inf, z = 0, H0 = 100, OmegaM = 0.3,
OmegaL = 1 - OmegaM - OmegaR, OmegaR = 0, Rho = "crit", Dist = "Co", DeltaVir = 200,
Munit = 1, Lunit = 1e+06, Vunit = 1000, ref)
cosNFWsigma(Rad=0.03253, Rs=0.03253, c=5, z = 0, H0 = 100, OmegaM = 0.3,
OmegaL = 1-OmegaM-OmegaR, OmegaR=0, Rho = "crit", DeltaVir = 200, Munit = 1,
Lunit = 1e+06, Vunit = 1000, ref)
cosNFWsigma_mean(Rad=0.03253, Rs=0.03253, c=5, z = 0, H0 = 100, OmegaM = 0.3,
OmegaL = 1-OmegaM-OmegaR, OmegaR=0, Rho = "crit", DeltaVir = 200, Munit = 1,
Lunit = 1e+06, Vunit = 1000, ref)

24 cosNFW

cosNFWgamma(Rad=0.03253, Rs=0.03253, c=5, SigmaC=1, z = 0, H0 = 100,
OmegaM = 0.3, OmegaL = 1-OmegaM-OmegaR, OmegaR=0, Rho = "crit", DeltaVir = 200,
Munit = 1, Lunit = 1e+06, Vunit = 1000, ref)
cosNFWduffym2c(M=2e12, z = 0, H0 = 100, OmegaM = 0.3, OmegaL = 1-OmegaM-OmegaR,
OmegaR=0, Rho = "crit", A=6.71, B=-0.091, C=-0.44, Munit = 1, ref)

Arguments

Mvir Mass within virial radius in units of ’Munit’.

Rad Radius at which to calculate output in units of ’Lunit’. Either this is a 3D radius
(cosNFW) or a projected 2D radius (cosNFWsigma/cosNFWsigma_mean).

Rho0 The normalising factor.

Rs The NFW profile scale radius, where Rs=Rmax/c, in units of ’Munit’.

c The NFW profile concentration parameter, where c=Rmax/Rs.

f The NFW profile truncation radius in units of ‘Rmax’.

Rmax The NFW profile Rmax parameter, where Rmax=Rs*c, in units of ’Lunit’.

SigmaC The critical surface mass density (when SigmaC=1 we compute the excess sur-
face density / ESD). See cosdistCrit for general computation given source
and lens redshifts.

M The halo mass required for computing the Duffy (2008) mass to concentration
conversion in units of ’Munit’. Here the halo mass required for input is the 200
times overdense with respect to critical variation.

z Cosmological redshift, where z must be > -1 (can be a vector).

H0 Hubble constant as defined at z=0 (default is H0=100 (km/s)/Mpc).

OmegaM Omega Matter as defined at z=0 (default is 0.3).

OmegaL Omega Lambda as defined at z=0 (default is for a flat Universe with OmegaL =
1-OmegaM = 0.7).

OmegaR Omega Radiation as defined at z=0 (default is 0, but OmegaM/3400 is typical).

Rho Set whether the critical energy density is used (crit) or the mean mass density
(mean).

Dist Determines the distance type, i.e. whether the Rho critical energy or mean mass
densities are calculated with respect to angular / physical distances (Ang) or
with respect to comoving distances (Co). In effect this means Rvir values are
either angular / physical (Ang) or comoving (Co). It does not affect Mvir <->
Sigma conversions, but does affect Mvir <-> Rvir and Rvir <-> Sigma.

DeltaVir Desired overdensity of the halo with respect to Rho.

Munit Base mass unit in multiples of Msun.

Lunit Base length unit in multiples of parsecs.

Vunit Base velocity unit in multiples of m/s.

A Parameter used for Duffy mass to concentration relation.

B Parameter used for Duffy mass to concentration relation.

C Parameter used for Duffy mass to concentration relation.

cosNFW 25

ref The name of a reference cosmology to use, one of 137 / 737 / Planck / Planck13
/ Planck15 / Planck18 / WMAP / WMAP9 / WMAP7 / WMAP5 / WMAP3 /
WMAP1 / Millennium / GiggleZ. Planck = Planck18 and WMAP = WMAP9.
The usage is case insensitive, so wmap9 is an allowed input. See cosref for
details. This overrides any other settings for H0/ OmegaM and OmegaL.

Details

These functions calculate various aspects of the NFW profile.

Value

cosNFW Returns the instantaneous NFW profile density.

cosNFWmass_c Returns the total mass given Rs and c in Msun/h.

cosNFWmass_Rmax

Returns the total mass given Rs and Rmax in Msun/h.

cosNFWvcirc Returns the circular Keplarian orbit velocity for a given radius assuming an
NFW halo potential.

cosNFWvesc Returns the minimum escape (or unbinding) velocity for a given radius assuming
an NFW halo potential.

cosNFWsigma Returns the line-of-sight surface mass density at Rad (Eqn. 11 of Wright &
Brainerd, 2000).

cosNFWsigma_mean

Returns the means surface mass density within Rad (Eqn. 13 of Wright & Brain-
erd, 2000).

cosNFWgamma Returns the radial dependence of the weak lensing shear (Eqn. 12 of Wright &
Brainerd, 2000).

cosNFWduffym2c Returns the Duffy et al (2008) predicted concentration for a given halo mass.

Author(s)

Aaron Robotham

References

Duffy A.R., et al., 2008, MNRAS, 390L

Navarro J.F., Frenk C.S., White Simon D.M., 1996, ApJ, 462

Wright C.O. & Brainerd T.G., 2000, ApJ, 534

See Also

cosvol, cosmap, cosdist, cosgrow, coshalo

26 cosNFW

Examples

#What difference do we see if we use the rad_mean200 radius rather than rad_crit200

rad_crit200=coshaloMvirToRvir(1e12,Lunit=1e6)
rad_mean200=coshaloMvirToRvir(1e12,Lunit=1e6,Rho='mean')
cosNFWmass_Rmax(Rmax=rad_crit200) #By construction we should get ~10^12 Msun/h
cosNFWmass_Rmax(Rmax=rad_mean200) #For the same profile this is a factor 1.31 larger

#Shear checks:

plot(10^seq(-2,2,by=0.1), cosNFWgamma(10^seq(-2,2,by=0.1),Rs=0.2,c=10), type='l',
log='xy', xlab='R/Rs', ylab='ESD')
legend('topright', legend=c('Rs=0.2','c=10'))

#How do critical, mean 200 and 500 masses evolve with redshift? Let's see:

zseq=10^seq(-2, 1, by=0.1)
con=seq(2, 20, by=0.01)
concol=rainbow(length(con), start=0, end=5/6)
rad_crit200=coshaloMvirToRvir(1, z=zseq, Rho='crit', DeltaVir=200, ref='Planck15')
rad_crit500=coshaloMvirToRvir(1, z=zseq, Rho='crit', DeltaVir=500, ref='Planck15')
rad_mean200=coshaloMvirToRvir(1, z=zseq, Rho='mean', DeltaVir=200, ref='Planck15')
rad_mean500=coshaloMvirToRvir(1, z=zseq, Rho='mean', DeltaVir=500, ref='Planck15')
rad_vir=coshaloMvirToRvir(1, z=zseq, Rho='crit', DeltaVir='get', ref='Planck15')

plot(1, 1, type='n', xlim=c(0.01,10), ylim=c(0.8,1.55), xlab='Redshift',
ylab='M200c / M500c', log='x')
for(i in 1:length(con)){
lines(zseq, cosNFWmass_Rmax(Rho0=1, Rs=rad_crit200[1]/con[i], Rmax=rad_crit200)/
cosNFWmass_Rmax(Rho0=1, Rs=rad_crit200[1]/con[i], Rmax=rad_crit500), col=concol[i])
}

plot(1, 1, type='n', xlim=c(0.01,10), ylim=c(0.8,1.55), xlab='Redshift',
ylab='M200m / M500m', log='x')
for(i in 1:length(con)){
lines(zseq, cosNFWmass_Rmax(Rho0=1, Rs=rad_crit200[1]/con[i], Rmax=rad_mean200)/
cosNFWmass_Rmax(Rho0=1, Rs=rad_crit200[1]/con[i], Rmax=rad_mean500), col=concol[i])
}

plot(1, 1, type='n', xlim=c(0.01,10), ylim=c(0.8,1.55), xlab='Redshift',
ylab='M200m / M200c',log='x')
for(i in 1:length(con)){
lines(zseq, cosNFWmass_Rmax(Rho0=1, Rs=rad_crit200[1]/con[i], Rmax=rad_mean200)/
cosNFWmass_Rmax(Rho0=1, Rs=rad_crit200[1]/con[i], Rmax=rad_crit200), col=concol[i])
}

plot(1, 1, type='n', xlim=c(0.01,10), ylim=c(0.8,1.55), xlab='Redshift',
ylab='M500m / M500c', log='x')
for(i in 1:length(con)){
lines(zseq, cosNFWmass_Rmax(Rho0=1, Rs=rad_crit200[1]/con[i], Rmax=rad_mean500)/
cosNFWmass_Rmax(Rho0=1, Rs=rad_crit200[1]/con[i], Rmax=rad_crit500), col=concol[i])
}

cosorb 27

plot(1, 1, type='n', xlim=c(0.01,10), ylim=c(0.8,1.55), xlab='Redshift',
ylab='Mvir / M200c',log='x')
for(i in 1:length(con)){
lines(zseq, cosNFWmass_Rmax(Rho0=1, Rs=rad_crit200[1]/con[i], Rmax=rad_vir)/
cosNFWmass_Rmax(Rho0=1, Rs=rad_crit200[1]/con[i], Rmax=rad_crit200), col=concol[i])
}

plot(1, 1, type='n', xlim=c(0.01,10), ylim=c(0.8,1.55), xlab='Redshift',
ylab='Mvir / M200m',log='x')
for(i in 1:length(con)){
lines(zseq, cosNFWmass_Rmax(Rho0=1, Rs=rad_crit200[1]/con[i], Rmax=rad_vir)/
cosNFWmass_Rmax(Rho0=1, Rs=rad_crit200[1]/con[i], Rmax=rad_mean200), col=concol[i])
}

plot(zseq, rad_crit200/rad_crit500, type='l', xlim=c(0.01,10), ylim=c(0.8,1.55),
xlab='Redshift', ylab='R200 / R500', log='x')

plot(zseq, rad_mean200/rad_crit200, type='l', xlim=c(0.01,10), ylim=c(0.8,1.55),
xlab='Redshift', ylab='Rm / Rc', log='x')

plot(zseq, rad_vir/rad_crit200, type='l', xlim=c(0.01,10), ylim=c(0.8,1.55),
xlab='Redshift', ylab='Rvir / R200c', log='x')

plot(zseq, rad_vir/rad_mean200, type='l', xlim=c(0.01,10), ylim=c(0.8,1.55),
xlab='Redshift', ylab='Rvir / R200c', log='x')

#R200m and R200c go either side of Rvir, so by cosmic conspiracy the mean is nearly flat:

plot(zseq, 2*rad_vir/(rad_mean200+rad_crit200), type='l', xlim=c(0.01,10),
ylim=c(0.8,1.55), xlab='Redshift', ylab='2Rvir / (R200c+R200m)', log='x')

#To check Vcirc and Vesc for a 10^12 Msun halo:

plot(0:400, cosNFWvcirc(0:400,f=1,Lunit=1e3), type='l', lty=1, xlab='R / kpc',
ylab='V / km/s', ylim=c(0,500))
lines(0:400, cosNFWvesc(0:400,f=1,Lunit=1e3), lty=2)
legend('topright', legend=c('Vel-Circ','Vel-Escape'), lty=c(1,2))
abline(v=coshaloMvirToRvir(Lunit=1e3), lty=3)

cosorb Orbital functions

Description

A variety of obital analysis functions. These are useful for setting up initial conditions for merging
systems etc.

28 cosorb

Usage

cosorbVisViva(mass=1e12, Rad=162.635, SemiMajRad=162.635, Munit=1, Lunit=1e3, Vunit=1)
cosorbFreeFall(M1=1e12, M2=1, Rad=162.635, Munit=1, Lunit=1e3, Vunit=1, Tunit=1e9)
cosorbRocheRad(M1=1e12, M2=1e10, Size=35.03865, Rfac=2.44)
cosorbRocheSize(M1=1e12, M2=1e10, Rad=396.8294, Rfac=2.44)

potential_part(part, eval = NULL, mass = 1, soft = 1, Munit = 1, Lunit = 1000,
Vunit = 1)

kinetic_part(vel, mass=NULL, Vunit = 1)

Arguments

mass Mass in units of ’Munit’.

M1 Mass of primary body in units of ’Munit’.

M2 Mass of secondary body in units of ’Munit’.

Rad Separation between bodies in units of ’Lunit’ (for cosorbRocheSize this is in
arbitrary units).

part Cartesian particle positions [x,y,z] in units of ’Lunit’.

eval Cartesian evalution positions [x,y,z] in units of ’Lunit’. If this is not provided
then the potentials are evaluated at the positions of ‘part’.

vel Cartesian particle velocities [vx,vy,vz] in units of ’Vunit’.

soft Numeric softening in units of ’Lunit’.

SemiMajRad The semi major radius of the orbit (a > 0 for ellipses, a = Rad for circles, 1/a =
0 for parabolas, and a < 0 for hyperbolas).

Size The size radius of the secondary object. Inside of this radius the object is bound
to the secondary, outside of this radius the object is stripped by the primary.

Rfac The Roche factor. Approximately taken to be 2.44, but in reality it varies de-
pending on the shape of the potentials etc.

Munit Base mass unit in multiples of Msun.

Lunit Base length unit in multiples of parsecs.

Vunit Base velocity unit in multiples of km/s.

Tunit Base time unit in multiples of years.

Details

These functions allow for various analytic conversions between the 3 major properties related to
virial radius: the mass, velocity dispresion and size. The default properties calculate properties for
1e12 Msun halos and assume masses in Msun, velocities in km/s and distances in Kpc.

cosvar 29

Value

cosorbVisViva function gives the required velocity in units of Vunit to create the specified orbit.

cosorbFreeFall function gives the free fall time to static initial velocity separated bodies.

cosorbRocheRad function gives the orbital radius at which the secondary will become stripped
within a specified bound radius.

cosorbRocheSize function gives the limiting bound radius of the secondary for a given system.

potential_part functions gives the total gravitational potential either at the positions of particles
provided (‘part’) or at the requested evaluation positions (‘eval’).

kinetic_part functions gives the total kinetic energy of particles provided (‘vel’)

Author(s)

Aaron Robotham, Chris Power

See Also

cosvol, cosmap, cosdist, cosgrow

Examples

cosorbVisViva(M=1e15, Rad=1, Lunit=1e6)
cosorbFreeFall(M1=1e15, M2=1, Rad=1, Lunit=1e6)
cosorbRocheRad(M1=1e12, M2=1e12, Size=162.635, Rfac=2.44)
cosorbRocheSize(M1=1e12, M2=1e12, Rad=396.8294, Rfac=2.44)

cosvar Driver & Robotham (2010) cosmic variance calculator

Description

The main cosmic variance calculator function taken from Driver & Robotham (2010). cosvarcar is
an interface to the Cartesian coordinate version, whilst cosvarsph is a utility interface to give ap-
proximate cosmic variance for astronomy survey regions (usually defined by RA, Dec and redshift
limits).

Usage

cosvarcar(aside = 50, bside = 50, cside = 50, regions = 1)
cosvarsph(long = c(129, 141), lat = c(-2, 3), zmax = 1, zmin = 0, regions = 1,
inunit='deg', sep=":")
cosvararea(area=60, zmax=1, zmin=0, regions=1, inunit='deg2')

30 cosvar

Arguments

aside The aside (shortest projected side) of the Cartesian box, must be defined using
737 cosmology.

bside The bside (longest projects side) of the Cartesian box, must be defined using
737 cosmology.

cside The cside (radial side) of the Cartesian box, must be defined using 737 cosmol-
ogy.

regions How many well separated regions of this size will there be? The geometry
provided is just for a single region, i.e. we reduce the single region CV by
1/sqrt(regions).

long Upper and lower longitude (RA) limits of interest in units of inunit. If of length
1 then the number specified is assumed to be the upper limit and the lower limit
is set to 0.

lat Upper and lower latitude (Dec) limits of interest in units of inunit. If of length
1 then the number specified is assumed to be the upper limit and the lower limit
is set to 0.

zmax Maximum redshift of comoving cone.

zmin Minimum redshift of comoving cone.

cosvarsph The units of angular coordinate provided for long and lat (see skyarea).
cosvararea The units of angular area provided (see cosvol).

inunit

sep When inunit=’sex’, sep defines the type of separator used for the HMS and DMS
strings (i.e. H:M:S and D:M:S would be sep=’:’, which is the default). See
hms2deg and dms2deg for more details.

area Sky area in units of innunit (default is square degrees)

Details

These functions use the empircally motivated cosmic variance percentage formula provided in
Driver & Robotham (2010) Eqn 4.

cosvarsph is a ’best effort’ approximation of the comoving box subtended by the specified spherical
coordinates using the following conversions:

CoDistLow = cosdistCoDist(z=zmin,H0=70,OmegaM=0.3)

CoDistHigh = cosdistCoDist(z=zmax,H0=70,OmegaM=0.3)

cside=CoDistHigh-CoDistLow

area=skyarea(long = long, lat = lat, inunit = inunit, outunit=’deg2’)[1]

volume=cosvol(area=area, zmax = zmax, zmin=zmin, H0 = 70, OmegaM = 0.3, inunit=’deg2’)[1]

aside=cos(mean(lat)*pi/180)*(abs(diff(long))/360)*(CoDistLow+cside/2)

bside=(abs(diff(long))/180)*(CoDistLow+cside/2)

cosvar 31

scale=sqrt(volume*1e9/(aside*bside*cside))

aside=aside*scale

bside=bside*scale

return(cosvarcar(aside=aside, bside=bside, cside=cside, subsets=subsets))

cosvararea is a simplifed version of cosvarsph, where the assumption is that aside=bside (so the
aspect ratio on the sky is 1:1).

Value

The output is the approximate percentage cosmic (or sample) variance that is expected for the
volume specified.

Note

Many people get upset at the term ’cosmic variance’ and prefer ’sample variance’. Whilst I am
sympathetic to the argument, more astronomers are familiar with the former term.

These cosmic variance estimates are defined using SDSS at z~0.1, caveats abound at higher red-
shifts, but these numbers should serve as a reasonably conservative (i.e. pessimistic) upper limit.

Author(s)

Aaron Robotham and Simon Driver

References

Driver S.P. & Robotham A.S.G., 2010, MNRAS, 407, 2131

See Also

cosvol, skyarea

Examples

#Approximate CV of the GAMA equatorial regions:
cosvarsph(long=12, lat=5, zmax=0.5)*1/sqrt(3)
#Or using the GAMA sexigesimal coordinates (should be the same):
cosvarsph(long = c('11:36:0','12:24:0'), lat = c('-2:0:0','3:0:0'), zmax=0.5,
inunit='sex')*1/sqrt(3)
#Approximate CV of the SDSS:
cosvarsph(long=150, lat=100, zmax=0.3)

32 cosvol

cosvol Cosmological volume calculator

Description

Given the sky area, two redshifts and the cosmology, this function calculates the comoving volume.

Usage

cosvol(area=60, zmax=1, zmin=0, H0=100, OmegaM=0.3, OmegaL=1-OmegaM-OmegaR, OmegaR=0,
w0=-1, wprime=0, inunit = "deg2", ref)

Arguments

area Sky area in units of innunit (default is square degrees)

zmax Maximum cosmological redshift of comoving cone.

zmin Minimum cosmological redshift of comoving cone.

H0 Hubble constant as defined at z=0 (default is H0=100 (km/s)/Mpc)

OmegaM Omega Matter as defined at z=0 (default is 0.3).

OmegaL Omega Lambda as defined at z=0 (default is for a flat Universe with OmegaL =
1-OmegaM-OmegaR = 0.7).

OmegaR Omega Radiation as defined at z=0 (default is 0, but OmegaM/3400 is typical).

w0 The value of dark energy equation of state as defined at z=0. See cosgrow for
more details.

wprime The evolution term that governs how the dark energy equation of state evolves
with redshift. See cosgrow for more details.

inunit The units of angular area provided. Allowed options are deg2 for square degrees,
amin2 for square arc minutes, asec2 for square arc seconds and rad2 or sr for
steradians.

ref The name of a reference cosmology to use, one of 137 / 737 / Planck / Planck13
/ Planck15 / Planck18 / WMAP / WMAP9 / WMAP7 / WMAP5 / WMAP3 /
WMAP1 / Millennium / GiggleZ. Planck = Planck18 and WMAP = WMAP9.
The usage is case insensitive, so wmap9 is an allowed input. See cosref for
details. This overrides any other settings for H0/ OmegaM and OmegaL.

Value

A 3 element vector. The first element (voltot) specifies the comoving volume of the requested
cone segment in Gpc^3, the second element (volmeanz) specifies the mean redshift when mass is
uniformly distributed in the volume, the third element (volmedz) specifies the median redshift when
mass is uniformly distributed in the volume.

Author(s)

Aaron Robotham

deg2dms 33

References

Based on the equations in:

Hogg D.W., 1999, arXiv, 9905116

Wright E.L., 2006, PASP, 118, 1711

See Also

cosdist,skyarea, cosmap, cosgrow

Examples

#Approximate volume of the GAMA survey (area given in skyarea example, zmax is approx
#limit of main galaxy sample):
TotalGAMAvol=cosvol(293.82,0.6)[1]
print(paste('The GAMA survey volume is ~',round(TotalGAMAvol,2),'Gpc^3'))

#Approximate volume of SDSS (area given for DR7, zmax is approx limit of main galaxy sample):
TotalSDSSvol=cosvol(8423,0.3)[1]
print(paste('The SDSS survey volume is ~',round(TotalSDSSvol,2),'Gpc^3'))

#Change of reference cosmology
cosvol(293.82,0.6,ref='Planck')

deg2dms Convert decimal degrees to dms format.

Description

Convert decimal degrees to dms (degrees, minutes, seconds) format. This is probably most useful
for declination conversion, since dms is fairly standard method of presenting declination coordi-
nates. The decimal degrees=d+m/60+s/3600. Degrees should range from -90 to +90.

Usage

deg2dms(deg, type='mat', sep=':', digits=2)

Arguments

deg The decimal degrees you are converting. All deg values should be -90<=deg<=90

type The output type desired. If ’mat’ then the output is a 3 column data.frame where
column 1 is the degree, column 2 is the minutes and column 3 is the seconds. If
’cat’ then the output is a single vector of strings where the separator is defined
by the ’sep’ argument.

sep Defines the type of separator used when type=’cat’. Any value other than ’DMS’
and ’dms’ is used for all separations, so the default ’:’ would produce an out-
put like 3:34:45.5. If set to ’dms’ or ’DMS’ then the output is of the format
3d34m45.5s and 3D34M45.5s resepctively.

34 deg2hms

digits The digits to print for angular seconds. See formatC for details on how digits is
parsed.

Value

A data.frame with the columns degrees, minutes and seconds if type=’mat’. If type=’cat’ then a
vector of strings with separators defined by the ’sep’ argument.

Author(s)

Aaron Robotham

See Also

dms2deg

Examples

print(deg2dms(12.345))
print(deg2dms(12.345,type='cat',sep=':'))
print(deg2dms(12.345,type='cat',sep='dms'))
print(deg2dms(12.345,type='cat',sep='DMS'))

deg2hms Convert decimal degrees to hms format.

Description

Convert decimal degrees to hms (hours, minutes, seconds) format. This is probably most useful for
right-ascension (RA) conversion, since hms is fairly standard method of presenting RA coordinates.
The decimal degrees=15*h+15*m/60+15*s/3600 (i.e. there are 24 hours in 360 degrees). Degrees
should range from 0 to 360.

Usage

deg2hms(deg, type='mat', sep=':', digits=2)

Arguments

deg The decimal degrees you are converting. All deg values should be 0<=d<=360.

type The output type desired. If ’mat’ then the output is a 3 column data.frame where
column 1 is the degree, column 2 is the minutes and column 3 is the seconds. If
’cat’ then the output is a single vector of strings where the separator is defined
by the ’sep’ argument.

sep Defines the type of separator used when type=’cat’. Any value other than ’DMS’
and ’dms’ is used for all separations, so the default ’:’ would produce an out-
put like 3:34:45.5. If set to ’hms’ or ’HMS’ then the output is of the format
3h34m45.5s and 3H34M45.5s resepctively.

dms2deg 35

digits The digits to print for angular seconds. See formatC for details on how digits is
parsed.

Value

A data.frame with the columns degrees, minutes and seconds if type=’mat’. If type=’cat’ then a
vector of strings with separators defined by the ’sep’ argument.

Author(s)

Aaron Robotham

See Also

hms2deg

Examples

deg2hms(123.456)
deg2hms(123.456,type='cat',sep=':')
deg2hms(123.456,type='cat',sep='hms')
deg2hms(123.456,type='cat',sep='HMS')

dms2deg Convert DMS to degrees format.

Description

Convert DMS (degrees, minutes, seconds) to degrees format. This is probably most useful for
declination conversion, since dms is fairly standard method of presenting declination coordinates.
The decimal degrees=d+m/60+s/3600. Degrees should range from -90 to +90. Degrees and minutes
should be integer and seconds can be decimal.

Usage

dms2deg(d,m,s,sign='d',sep=':')

Arguments

d The integer number of degrees you are converting. If it is not integer then the
floor of the number is taken. This can contain the sign of the declination when
sign=’d’, but must be all positive if the sign argument is specified (this is re-
quired if d contains any 0s, see below). If sign is specified, all d values should
be 0<=d<=90, otherwise d values should be -90<=d<=90.

m The integer number of minutes you are converting. If it is not integer then the
floor of the number is taken. All m values should be 0<=m<60.

s The decimal number of seconds you are converting. All s values should be
0<=s<60.

36 eq2gal

sign The sign of the declination. The default ’d’ inherits the sign of the d argument.
This is ambiguous when d is 0 since the sign of +/-0 is taken to be 0. If d contains
any 0s, you must supply a vector of the same length as d with +ve or -ve values
(e.g. +/- 1), the sign of these value will be taken as the sign for the declination.

sep Defines the type of separator used when ’d’ is a vector of strings. Any value
other than ’DMS’ and ’dms’ is used for all separations, so the default ’:’ would
be for an input like 3:34:45.5. If set to ’dms’ or ’DMS’ then the output is of the
format 3d34m45.5s and 3D34M45.5s resepctively.

Value

A value of decimal degrees.

Author(s)

Aaron Robotham

See Also

deg2dms

Examples

print(dms2deg(70,45,19,-1))
print(dms2deg('-70:45:19'))
print(dms2deg('-70d45m19s',sep='dms'))
print(dms2deg(c('-70D45M19S','3D5M15S'),sep='DMS'))

eq2gal Convert Equtorial to Galactic Coordinates

Description

Simple conversions accurate to about 0.1 arcseconds between J2000 Equatorial and MW Galactic.

Usage

eq2gal(RA, Dec, pole_RA = 192.859508, pole_Dec = 27.128336, eta = 32.932)
gal2eq(gal_long, gal_lat, pole_RA = 192.859508, pole_Dec = 27.128336, eta = 32.932)

Arguments

RA Numeric vector; Right Ascension in degrees (J2000 system). For convenience
this can also be a two column matrix / data.frame containing ‘RA’ and ‘Dec’
columns.

Dec Numeric vector; Declination in degrees (J2000 system).

getpixscale 37

gal_long Numeric vector; Galactic Longitude in degrees (J2000 system). For convenience
this can also be a two column matrix / data.frame containing ‘gal_long’ and
‘gal_lat’ columns.

gal_lat Numeric vector; Galactic Latitude in degrees (J2000 system).

pole_RA Numeric scalar; Right Ascension of Galactic Pole in degrees (J2000 system).

pole_Dec Numeric scalar; Declination of Galactic Pole in degrees (J2000 system).

eta Numeric scalar; Tilt of the Earth’s axis in degrees (J2000 system).

Details

Approximate simple conversions, accurate usully to 0.1 arcseconds

Value

eq2gal returns the Galactic longitude and latitude in degrees (two column output). gal2eq returns
the Equatorial RA and Dec in degress (two column output).

Author(s)

Aaron Robotham

References

"Practical astronomy with your calculator" (Peter Duffett-Smith)

See Also

sph2car,car2sph

Examples

Notice the conversion anbiguity at the poles

gal2eq(eq2gal(seq(0,360, len=19), seq(-90,90, len=19)))

getpixscale Get Pixel Scale

Description

Given a FITSio of astro header, calculate the image pixel scale.

Usage

getpixscale(header, CD1_1 = 1, CD1_2 = 0, CD2_1 = 0, CD2_2 = 1)

38 getpixscale

Arguments

header Full FITS header in table or vector format. Legal table format headers are pro-
vided by the read.fitshdr function or the ‘hdr’ list output of read.fits in
the astro package; the ‘hdr’ output of readFITS in the FITSio package or the
‘header’ output of magcutoutWCS. Missing header keywords are printed out
and other header option arguments are used in these cases. See xy2radec.

CD1_1 FITS header CD1_1 for the Tan Gnomonic projection system. Change in RA-
Tan in degrees along x-Axis.

CD1_2 FITS header CD1_2 for the Tan Gnomonic projection system. Change in RA-
Tan in degrees along y-Axis.

CD2_1 FITS header CD2_1 for the Tan Gnomonic projection system. Change in Dec-
Tan in degrees along x-Axis.

CD2_2 FITS header CD2_2 for the Tan Gnomonic projection system. Change in Dec-
Tan in degrees along y-Axis.

Details

In most cases users will simply provide a valid header to find the WCS, but you can enter the ‘CD’
values explicitly. Calculating the pixel scale from the latter is almost trivial, but the option is there
for the curious/lazy.

Value

Numeric scalar; the image pixscale in asec/pixel (so typically a value of 0.1-0.5 for modern survey
instruments).

Author(s)

Aaron Robotham

Examples

Not run:
#The answer should be almost exactly 0.2 asec/pixel:

#Using FITSio and ProFit packages
image = readFITS(system.file("extdata", 'KiDS/G266035fitim.fits', package="ProFit"))
getpixscale(image$hdr)
#Using astro package
image = read.fits(system.file("extdata", 'KiDS/G266035fitim.fits', package="ProFit"))
getpixscale(image$hdr[[1]])

End(Not run)

hms2deg 39

hms2deg Convert hms to degrees format.

Description

Convert hms (hours, minutes, seconds) to degrees format. This is probably most useful for right
ascension (RA) conversion, since hms is fairly standard method of presenting RA coordinates. The
decimal degrees=15*h+15*m/60+15*s/3600. Should range between 0 and 24 hours. Hours and
minutes should be integer and seconds can be decimal.

Usage

hms2deg(h,m,s,sep=':')

Arguments

h The integer number of hours you are converting. If it is not integer then the floor
of the number is taken. All m values should be 0<=h<=24.

m The integer number of minutes you are converting. If it is not integer then the
floor of the number is taken. All m values should be 0<=m<60.

s The decimal number of seconds you are converting. All s values should be
0<=s<60.

sep Defines the type of separator used when ’h’ is a vector of strings. Any value
other than ’HMS’ and ’hms’ is used for all separations, so the default ’:’ would
be for an input like 3:34:45.5. If set to ’hms’ or ’HMS’ then the output is of the
format 3h34m45.5s and 3H34M45.5s resepctively.

Value

A value of decimal degrees.

Author(s)

Aaron Robotham

See Also

deg2hms

Examples

hms2deg(12,10,36)
hms2deg('12:10:36')
hms2deg('12h10m36s',sep='hms')
hms2deg(c('12H10M36S','3H4M10S'),sep='HMS')

40 planck

IAUID IAU name creator.

Description

Creates IAU legal names for objects given coordinates, name and epoch.

Usage

IAUID(ra, dec, name = "GAMA", epoch = "J")

Arguments

ra Right Ascension in decimal degrees.

dec Declination in decimal degrees.

name Name to be appended to IAU designation as a string.

epoch Epoch, i.e. ’J’ (default) or ’B’. Enter as a string.

Value

Text string that outputs an IAU legal name for an object.

Author(s)

Aaron Robotham

Examples

IAUID(123.45,67.89,'GAMA','J')

planck Planck’s Law and Related Functions

Description

Functions related to Planck’s Law of thermal radiation.

planck 41

Usage

cosplanckLawRadFreq(nu,Temp=2.725)
cosplanckLawRadWave(lambda,Temp=2.725)
cosplanckLawEnFreq(nu,Temp=2.725)
cosplanckLawEnWave(lambda,Temp=2.725)
cosplanckLawRadFreqN(nu,Temp=2.725)
cosplanckLawRadWaveN(lambda,Temp=2.725)
cosplanckPeakFreq(Temp=2.725)
cosplanckPeakWave(Temp=2.725)
cosplanckSBLawRad(Temp=2.725)
cosplanckSBLawRad_sr(Temp=2.725)
cosplanckSBLawEn(Temp=2.725)
cosplanckLawRadPhotEnAv(Temp=2.725)
cosplanckLawRadPhotN(Temp=2.725)
cosplanckCMBTemp(z,Temp=2.725)

Arguments

nu The frequency of radiation in Hertz (Hz).

lambda The wavelength of radiation in metres (m).

Temp The absolute temperature of the system in Kelvin (K).

z Redshift, where z must be > -1 (can be a vector).

Details

The functions with Rad in the name are related the spectral radiance form of Planck’s Law (typically
designated I or B), whilst those with En are related to the spectral energy density form of Planck’s
Law (u), where u = 4πI/c.

To calculate the number of photons in a mode we simply use E = hν = hc/λ.

Below h is the Planck constant, kB is the Boltzmann constant, c is the speed-of-light in a vacuum
and σ is the Stefan-Boltzmann constant.

cosplanckLawRadFreq is the spectral radiance per unit frequency version of Planck’s Law, defined
as:

Bν(ν, T) = Iν(ν, T) =
2hν3

c2
1

ehν/kBT − 1

cosplanckLawRadWave is the spectral radiance per unit wavelength version of Planck’s Law, de-
fined as:

Bλ(λ, T) = Iλ(λ, T) =
2hc2

λ5

1

ehc/λkBT − 1

cosplanckLawRadFreqN is the number of photons per unit frequency, defined as:

Bν(ν, T) = Iν(ν, T) =
2ν2

c2
1

ehν/kBT − 1

42 planck

cosplanckLawRadWaveN is the number of photons per unit wavelength, defined as:

Bλ(λ, T) = Iλ(λ, T) =
2c

λ4

1

ehc/λkBT − 1

cosplanckLawEnFreq is the spectral energy density per unit frequency version of Planck’s Law,
defined as:

uν(ν, T) =
8πhν3

c3
1

ehν/kBT − 1

cosplanckLawEnWave is the spectral energy density per unit wavelength version of Planck’s Law,
defined as:

uλ(λ, T) =
8πhc

λ5

1

ehc/λkBT − 1

cosplanckPeakFreq gives the location in frequency of the peak of Iν(ν, T), defined as:

νpeak = 2.821kBT

cosplanckPeakWave gives the location in wavelength of the peak of Iλ(λ, T), defined as:

λpeak = 4.965kBT

cosplanckSBLawRad gives the emissive power (or radiant exitance) version of the Stefan-Boltzmann
Law, defined as:

j∗ = σT 4

cosplanckSBLawRad_sr gives the spectral radiance version of the Stefan-Boltzmann Law, defined
as:

L = σT 4/π

cosplanckSBLawEn gives the energy density version of the Stefan-Boltzmann Law, defined as:

ϵ = 4σT 4/c

Notice that j∗ and L merely differ by a factor of π, i.e. L is per steradian.

cosplanckLawRadPhotEnAv gives the average energy of the emitted black body photon, defined as:

< Ephot >= 3.729282× 10−23T

cosplanckLawRadPhotN gives the total number of photons produced by black body per metre
squared per second per steradian, defined as:

Nphot = 1.5205× 1015T 3/π

Various confidence building sanity checks of how to use these functions are given in the Examples
below.

planck 43

Value

Planck’s Law in terms of spectral radiance:

cosplanckLawRadFreq

The power per steradian per metre squared per unit frequency for a black body
(W.sr−1.m−2.Hz−1).

cosplanckLawRadWave

The power per steradian per metre squared per unit wavelength for a black body
(W.sr−1.m−2.m−1).

Planck’s Law in terms of spectral energy density:

cosplanckLawEnFreq

The energy per metre cubed per unit frequency for a black body (J.m−3.Hz−1).
cosplanckLawEnWave

The energy per metre cubed per unit wavelength for a black body (J.m−3.m−1).

Photon counts:

cosplanckLawRadFreqN

The number of photons per steradian per metre squared per second per unit
frequency for a black body (photons.sr−1.m−2.s−1.Hz−1).

cosplanckLawRadWaveN

The number of photonsper steradian per metre squared per second per unit wave-
length for a black body (photons.sr−1.m−2.s−1.m−1).

Peak locations (via Wien’s displacement law):

cosplanckPeakFreq

The frequency location of the radiation peak for a black body as found in cosplanckLawRadFreq.
cosplanckPeakWave

The wavelength location of the radiation peak for a black body as found in
cosplanckLawRadWave.

Stefan-Boltzmann Law:

cosplanckSBLawRad

Total energy radiated per metre squared per second across all wavelengths for a
black body (W.m−2). This is the emissive power version of the Stefan-Boltzmann
Law.

cosplanckSBLawRad_sr

Total energy radiated per metre squared per second per steradian across all wave-
lengths for a black body (W.m−2.sr−1). This is the radiance version of the
Stefan-Boltzmann Law.

cosplanckSBLawEn

Total energy per metre cubed across all wavelengths for a black body (J.m−3).
This is the energy density version of the Stefan-Boltzmann Law.

Photon properties:

44 planck

cosplanckLawRadPhotEnAv

Average black body photon energy (J).
cosplanckLawRadPhotN

Total number of photons produced by black body per metre squared per second
per steradian (m−2.s−1.sr−1).

Cosmic Microwave Background:

cosplanckCMBTemp

The temperaure of the CMB at redshift z.

Author(s)

Aaron Robotham

References

Marr J.M., Wilkin F.P., 2012, AmJPh, 80, 399

See Also

cosgrow

Examples

#Classic example for different temperature stars:

waveseq=10^seq(-7,-5,by=0.01)
plot(waveseq, cosplanckLawRadWave(waveseq,5000),
log='x', type='l', xlab=expression(Wavelength / m),
ylab=expression('Spectral Radiance' / W*sr^{-1}*m^{-2}*m^{-1}), col='blue')
lines(waveseq, cosplanckLawRadWave(waveseq,4000), col='green')
lines(waveseq, cosplanckLawRadWave(waveseq,3000), col='red')
legend('topright', legend=c('3000K','4000K','5000K'), col=c('red','green','blue'), lty=1)

#CMB now:

plot(10^seq(9,12,by=0.01), cosplanckLawRadFreq(10^seq(9,12,by=0.01)),
log='x', type='l', xlab=expression(Frequency / Hz),
ylab=expression('Spectral Radiance' / W*sr^{-1}*m^{-2}*Hz^{-1}))
abline(v=cosplanckPeakFreq(),lty=2)

plot(10^seq(-4,-1,by=0.01), cosplanckLawRadWave(10^seq(-4,-1,by=0.01)),
log='x', type='l', xlab=expression(Wavelength / m),
ylab=expression('Spectral Radiance' / W*sr^{-1}*m^{-2}*m^{-1}))
abline(v=cosplanckPeakWave(),lty=2)

#CMB at surface of last scattering:

TempLastScat=cosplanckCMBTemp(1100) #Note this is still much cooler than our Sun!

plot(10^seq(12,15,by=0.01), cosplanckLawRadFreq(10^seq(12,15,by=0.01),TempLastScat),

Sky Coordinate Matching 45

log='x', type='l', xlab=expression(Frequency / Hz),
ylab=expression('Spectral Radiance' / W*sr^{-1}*m^{-2}*Hz^{-1}))
abline(v=cosplanckPeakFreq(TempLastScat),lty=2)

plot(10^seq(-7,-4,by=0.01), cosplanckLawRadWave(10^seq(-7,-4,by=0.01),TempLastScat),
log='x', type='l', xlab=expression(Wavelength / m),
ylab=expression('Spectral Radiance' / W*sr^{-1}*m^{-2}*m^{-1}))
abline(v=cosplanckPeakWave(TempLastScat),lty=2)

#Exact number of photons produced by black body:

cosplanckLawRadPhotN()

#We can get pretty much the correct answer through direct integration, i.e.:

integrate(cosplanckLawRadFreqN,1e8,1e12)
integrate(cosplanckLawRadWaveN,1e-4,1e-1)

#Stefan-Boltzmann Law:

cosplanckSBLawRad_sr()

#We can get (almost, some rounding is off) the same answer by multiplying
#the total number of photons produced by a black body per metre squared per
#second per steradian by the average photon energy:

cosplanckLawRadPhotEnAv()*cosplanckLawRadPhotN()

Sky Coordinate Matching

Sky matching

Description

These functions allows the user to match a reference set of sky coordinates against a comparison
set of sky coordinates. The match radius can be varied per source (all matches per source are given
within this radius), and mutual best matches are also extracted. coordmatch should be used for
finding multiple matches and coordmatchsing should be used when trying to find matches around
a single source. internalclean is a utility function that will remove closely duplicated objects
via some ‘tiebreak’ criterion, and is probably only of interest to advanced users trying to clean
catalogues that were produced from overlapping frames.

Usage

coordmatch(coordref, coordcompare, rad = 2, inunitref = "deg", inunitcompare = "deg",
radunit = "asec", sep = ":", kstart = 10, ignoreexact = FALSE, ignoreinternal = FALSE,
matchextra = FALSE, smallapprox = FALSE, jitter = FALSE, jamount = 1e-12, jseed = 666)

46 Sky Coordinate Matching

coordmatchsing(RAref, Decref, coordcompare, rad = 2, inunitref = "deg",
inunitcompare = "deg", radunit = 'asec', sep = ":", ignoreexact = FALSE,
smallapprox = FALSE)

internalclean(RA, Dec, rad = 2, tiebreak, decreasing = FALSE, Nmatch = 'all',
iter = FALSE, group = FALSE, ...)

group_links(links, grouptype = 'list', selfgroup = FALSE, return_groupinfo = FALSE,
return_linkslist = FALSE)

group_graph(links, selfgroup=FALSE)

Arguments

coordref For coordmatch this is the reference dataset, i.e. you want to find matches for
each object in this catalogue. A minimum two column matrix or data.frame,
where column one is the RA and column two the Dec. See ‘matchextra’.

coordcompare The comparison dataset, i.e. you want to find objects in this catalogue that
match locations in coordref. A minimum two column matrix or data.frame,
where column one is the RA and column two the Dec. If ‘coordcompare’ is not
provided then it is set to ‘coordref’ automatically. Since this means the user
is doing a single table internal match ‘ignoreinternal’ is automatically set to
TRUE (but this can be overridden). See ‘matchextra’.

RAref For coordmatchsing this is the reference RA for the single object of interest.

Decref For coordmatchsing this is the reference Dec for the single object of interest.

RA For internalclean this is a vector of right ascensions for internal cleaning. If
‘RA’ is a two column structure then the second column is taken to be ‘Dec’.

Dec For internalclean this is a vector of declinations for internal cleaning. If ‘RA’
is a two column structure then the second column is taken to be ‘Dec’.

inunitref The units of angular coordinate provided for coordref / RAref / Decref. Allowed
options are deg for degress, rad for radians and sex for sexigesimal (i.e. HMS
for RA and DMS for Deg).

inunitcompare The units of angular coordinate provided for coordcompare. Allowed options
are deg for degress, rad for radians and sex for sexigesimal (i.e. HMS for RA
and DMS for Deg).

radunit The unit type for the radius specified. Allowed options are deg for degress, amin
for arc minutes, asec for arc seconds and rad for radians.

sep If inunitref, inunitcompare or inunit is set to ’sex’ then sep defines the separation
type as detailed in hms2deg and dms2deg.

kstart The number of matching nodes to attempt initial. The code iterates until all
matches within the specified radius (rad) have been found, but it works faster if
the kstart is close to the maximum number of matches for any coordref object.

ignoreexact Should exact matches be ignored in the output? If TRUE then 0 separation
ID matches are set to 0 and the separation is NA. This might be helpful when
matching the same table against itself, where you have no interest in finding
object matches with respect to themselves.

Sky Coordinate Matching 47

ignoreinternal Should identical row matches be ignored in the output? If TRUE then exact row
ID matches are set to 0 and the separation is NA. The bestmatch output will
ignore these trivial matchesw also. This only makes sense if ‘coordref’ and
‘coordcompare’ are the same table and you are trying to do an internal table
match where you do not want the trivial result of rows matching to themselves.
Automatically switches to TRUE if ‘coordcompare’ is not provided.

matchextra Should extra columns in ‘coordref’ and ‘coordcompare’ be used as part of the
N-D match? Extra columns beyond the requried RA and Dec can be provided
and these will be used as part of the N-D match. The meaning of ‘rad’ in
this case is not trivial of course since the match is done within a hyper-sphere.
When the extra columns have the same value ‘rad’ can still be interpretted as an
angular coordinate match. These extra columns should be appropriately scaled,
e.g. you might want to make a 2 arcsec match with an extra magnitude column.
In this case even if two objects sit on top of each other on sky, they cannot differ
by more than 2 mag in flux to be a match.

smallapprox Should the small angle approximation of asin(a/b) = a/b be used? If TRUE then
some computations may be much faster, since asin is an expensive computation
to make for lots of near matches.

jitter Logical; should a very small jitter be applied to the ‘coordcompare’ data? This
should be negligibly small, but does make the output slightly variable depend-
ing on the seed. If ‘jitter’ is not explicitly set and ‘ignoreinternal’ is
TRUE (which is the case if only one catalogue is supplied) and ‘ignoreexact’
is FALSE then ‘jitter’ is automatically switched to TRUE. See jitter.

jamount Numeric scaler; max amount of jitter in radians (passed to ‘amount’ in jitter).
The default is less than a millionth of an asec, so there should be no circum-
stances where this affects real results (that is massively sub Event Horizon Tele-
scope resolution even).

jseed Integer scalar; random seed to use for jitter.

rad The matching radius to use. If this is length one then the same radius is used
for all objects, otherwise it must be the same length as the number of rows in
coordref.

tiebreak For internalclean this is a vector of values to determine the preferred source,
e.g. something like magnitude of distance to the centre of the origin frame. By
default smaller values are considered better, but this can be flipped by setting
‘decreasing’=TRUE. If ‘tiebreak’ is not provided then the first source that
appears is considered the better object in the cleaned catalogue.

decreasing Determines whether smaller (‘decreasing’=FALSE) or larger (‘decreasing’=TRUE)
‘tiebreak’ values are considered preferable.

Nmatch Character scalar or integer vector; if default ’all’ then cleaning is done for any
number of matches and no match objects (unambiguous) are passed through. If
a vector then the number of matches has to exist in the ‘Nmatch’ vector to get
passed out. This is useful if we only want cleaned objects in overlap regions
where we expect a certain number of matches. Note ‘Nmatch’=1 means two
objects match- the base reference and 1 other etc.

iter Logical; should internalclean by run until no matches within the ‘rad’ exist?
The reason you might want to do this is to break degeneracies in chains where all

48 Sky Coordinate Matching

links are within the search ‘rad’ but the extremes are outside of this. In that situ-
ation you might want to keep sub-groups based on their preferred ‘tiebreak’ (in
which case use ‘iter’ = FALSE) or you might want to fully resolve the whole
complexes down to guarantee nothing matches within the ‘rad’ (in which case
use ‘iter’ = TRUE). The latter is the only solution that guarantees no sources
are left that match within ‘rad’. See Examples.

group Logical; this goes a step further than ‘iter’ and cretes full FoF groups. See
Examples.

links Integer Matrix; the two column link associations that we wish to group together.
These do not need to be symmetric and can be non-contiguous, they must be
integers though.

grouptype Characeter scalar; the type of group output, options are ’list’: a list of the groups;
or ’DF’: a data.frame, where column 1 is the linkID and column 2 the groupID.

selfgroup Logical; should 1-1 self-groupings be ignored (i.e. 2 matching to 2)?
return_groupinfo

Logical; should basic group info (Ngroup, Nlist, IDmin, IDmax) be returned as
a data.frame? Note Nlist is only present if ‘return_linkslist’ is also TRUE.

return_linkslist

Logical; should the links that form the groups be returned?
... Other arguments to be passed to coordmatch.

Details

For coordmatch the main matching is done using nn2 that comes as part of the RANN package.
coordmatch adds a large amount of sky coordinate oriented functionality beyond the simple imple-
mentation of nn2. For single object matches coordmatchsing should be used since it is substantially
faster in this regime (making use of direct dot products).

‘ignoreexact’ is more strict in a sense since all objects exactly matching are ignored, whereas with
‘ignoreinternal’ only identical row IDs are interpretted as being the same object. This setting
can be useful in internalclean (via . . .) too, since having exact matches and internal matches can
create ambiguous cleaning.

Value

The output of coordmatch is a list containing:

ID The full matrix of matching IDs. The rows are ordered identically to ‘coordref’,
and the ID value is the row position in ‘coordcompare’ for the match.

sep The full matrix of matching separations in the same units as ‘radunit’. The
rows are ordered identically to ‘coordref’, and the sep value is the separation
for each matrix location in the ID list object.

Nmatch Nmatch is a vector giving the total number of matches for each ‘coordref’ row.
bestmatch A three column data.frame giving the best matching IDs. Only objects with

at least one match are listed. Column 1 (refID) gives the row position from
‘coordref’ and column 2 (compareID) gives the corresponding best matching
row position in ‘coordcompare’. Column 3 (sep) gives the separation between
the matched ref and compare positions in the same units as radunit.

Sky Coordinate Matching 49

The output of coordmatchsing is a list containing:

ID The full vector of matching IDs. The ID values are the row positions in ‘coordcompare’
for the match.

sep The full vector of matching separations in the same units as ‘radunit’. The sep
value is the separation for each vector location in the ID list object.

Nmatch Total number of matches within the specified radius.

bestmatch The best matching ID, where the ID value is the row position in ‘coordcompare’
for the match.

The output of internalclean is a vector containing IDs of the rows to keep to achieve the cleaned
catalogue.

The output of group_links depends on the return parameters. Minimally it is a list of the FoF
groups. Can also be a list structure containing:

group The list of the FoF groups (if ‘grouptype’ = ’list’) or data.frame containing
linkID and groupID (if ‘grouptype’ = ’DF’).

groupinfo The table of basic group information when ‘return_groupinfo’ is TRUE. The
data.frame will contain Ngroup, Nlist, IDmin, IDmax, though note Nlist is only
present if ‘return_linkslist’ is also TRUE.

linkslist The list of the links that form the respective groups.

The output of group_graph is the data.table containing linkID and groupID

Author(s)

Aaron Robotham

See Also

hms2deg, dms2deg, sph2car

Examples

set.seed(666)

#Here we make objects in a virtual 1 square degree region

mocksky=cbind(runif(1e3), runif(1e3))

#Now we match to find all objects within an arc minute, ignoring self matches

mockmatches=coordmatch(mocksky, mocksky, ignoreexact=TRUE, rad=1, radunit='amin')

#Now we match to find all objects with varying match radii, ignoring self matches

mockmatchesvary=coordmatch(mocksky, mocksky, ignoreexact=TRUE, rad=seq(0,1,length=1e3),
radunit='amin')

50 skyarea

#We can do this also by using the internal table match mode:

mockmatchesvary2=coordmatch(mocksky, rad=seq(0,1,length=1e3), radunit='amin')

#Check that this looks the same (should be identical with all zeroes):

summary(mockmatchesvary$bestmatch-mockmatchesvary2$bestmatch)

#Internal matching can be complicated:

coords = cbind(c(-8:8, 11:14),c(-8:8, 11:14))*0.0001
plot(coords)

#Note the search radius is such two adjacent objects can be associated:

library(plotrix)
points(0,0,pch=4)
draw.circle(0,0,radius=1.2/3600)
draw.circle(8e-4,8e-4,radius=1.2/3600)

(internalclean(coords, rad=1.2))
(internalclean(coords, rad=1.2, iter=TRUE))
(internalclean(coords, rad=1.2, group=TRUE))

#Basic Fof groups:
set.seed(666)
links = cbind(sample(40,20,replace=TRUE), sample(40,20,replace=TRUE))
print(links)

group_links(links, return_groupinfo=TRUE)

group_graph(links)

skyarea Exact angular area calculator

Description

This function takes a survey geometry defined by RA (long) and Dec (latitude) limits and calculates
the exact angular area covered.

Usage

skyarea(long = c(129, 141), lat = c(-2, 3), inunit = "deg", outunit = "deg2", sep=":")

Arguments

long Upper and lower longitude (RA) limits of interest in units of inunit. If of length
1 then the number specified is assumed to be the upper limit and the lower limit
is set to 0.

skyarea 51

lat Upper and lower latitude (Dec) limits of interest in units of inunit. If of length
1 then the number specified is assumed to be the upper limit and the lower limit
is set to 0.

inunit The units of angular coordinate provided. Allowed options are deg for degress,
amin for arc minutes, asec for arc seconds, rad for radians and sex for sexigesi-
mal (i.e. HMS for RA and DMS for Deg).

outunit The units of angular area desired. Allowed options are deg2 for square degrees,
amin2 for square arc minutes, asec2 for square arc seconds and rad2 or sr for
steradians.

sep When inunit=’sex’, sep defines the type of separator used for the HMS and DMS
strings (i.e. H:M:S and D:M:S would be sep=’:’, which is the default). See
hms2deg and dms2deg for more details.

Value

Two value vector. First value is the sky area covered in units of outunit (named area), second value
is the fraction of the celestial sphere covered by the specified geometry (named areafrac).

Author(s)

Aaron Robotham

See Also

cosvol, hms2deg, dms2deg

Examples

#The GAMA survey areas:
G02area=skyarea(c(30.2,38.8),c(-10.25,-3.72))
G09area=skyarea(c(129,141),c(-2,3))
G12area=skyarea(c(174,186),c(-3,2))
G15area=skyarea(c(211.5,223.5),c(-2,3))
G23area=skyarea(c(338.1,351.9),c(-35,-30))

#Total GAMA survey area:
TotalGAMAarea=G02area+G09area+G12area+G15area+G23area
paste('The GAMA survey area is',round(TotalGAMAarea['area'],2),'sq. deg.')

#Future TACs note: this is less than 1% of the sky ;-)
paste('The GAMA survey area is',round(TotalGAMAarea['areafrac']*100,2),'% of the sky')

52 skyproj

skyproj Tan Gnomonic and Sine Orthographic Projection System WCS Solver
Functions

Description

Converts RA/Dec (degrees) to x/y (pixels) position using the Tan Gnomonic or Sine Orthographic
projection systems, and vice-versa. Translations adapted from: http://mathworld.wolfram.com/GnomonicProjection.html
and http://mathworld.wolfram.com/OrthographicProjection.html.

Usage

radec2xy(RA, Dec, header, CRVAL1 = 0, CRVAL2 = 0, CRPIX1 = 0, CRPIX2 = 0, CD1_1 = 1,
CD1_2 = 0, CD2_1 = 0, CD2_2 = 1, CTYPE1 = 'RA--TAN', CTYPE2 = 'DEC--TAN')
xy2radec(x, y, header, CRVAL1 = 0, CRVAL2 = 0, CRPIX1 = 0, CRPIX2 = 0, CD1_1 = 1,
CD1_2 = 0, CD2_1 = 0, CD2_2 = 1, CTYPE1 = 'RA--TAN', CTYPE2 = 'DEC--TAN')
getimlim(x, y, header, CRVAL1 = 0, CRVAL2 = 0, CRPIX1 = 0, CRPIX2 = 0, CD1_1 = 1,
CD1_2 = 0, CD2_1 = 0, CD2_2 = 1, CTYPE1 = 'RA--TAN', CTYPE2 = 'DEC--TAN')

Arguments

RA Vector or matrix; target right ascension in degrees. If matrix then the first col-
umn will be used as RA and the second column as Dec.

Dec Vector; target declination in degrees. Ignored if ‘RA’ is a matrix.

x Vector or matrix; target x-pixel. If Matrix then the first column will be used as
the x-axis and the second column as y-axis. For getimlim this can be an image
matrix or an image and header combination.

y Vector; target y-pixel. Ignored if ‘x’ is a matrix.

CRVAL1 FITS header CRVAL1 for the ‘CTYPE1’ projection system. This is the RA in
degrees at the location of ‘CRPIX1’.

CRVAL2 FITS header CRVAL2 for the ‘CTYPE2’ projection system. This is the Dec in
degrees at the location of ‘CRPIX2’.

CRPIX1 FITS header CRPIX1 for the ‘CTYPE1’ projection system. This is the x pixel
value at the location of ‘CRVAL1’.

CRPIX2 FITS header CRPIX2 for the ‘CTYPE2’ projection system. This is the y pixel
value at the location of ‘CRVAL2’.

CD1_1 FITS header CD1_1 for the ‘CTYPE1’ projection system. Change in ‘CTYPE1’ in
degrees along x-Axis.

CD1_2 FITS header CD1_2 for the ‘CTYPE1’ projection system. Change in ‘CTYPE1’ in
degrees along y-Axis.

CD2_1 FITS header CD2_1 for the ‘CTYPE2’ projection system. Change in ‘CTYPE2’ in
degrees along x-Axis.

CD2_2 FITS header CD2_2 for the ‘CTYPE2’ projection system. Change in ‘CTYPE2’ in
degrees along y-Axis.

skyproj 53

CTYPE1 The RA projection system type. Either ’RA–TAN’ for Tan Gnomonic (default),
or ’RA–SIN’ for Sine Orthographic. ’RA–NCP’ is approximated by Sine Or-
thographic with a warning. Over-ridden by the FITS header.

CTYPE2 The DEC projection system type. Either ’DEC–TAN’ for Tan Gnomonic (de-
fault), or ’DEC–SIN’ for Sine Orthographic. ’DEC–NCP’ is approximated by
Sine Orthographic with a warning. Over-ridden by the FITS header.

header Full FITS header in table or vector format. Legal table format headers are pro-
vided by the read.fitshdr function or the ‘hdr’ list output of read.fits in
the astro package). Also the ‘hdr’ output of readFITS in the FITSio package
provides legal vector format inputs. If a header is provided then key words will
be taken from here as a priority. Missing header keywords are printed out and
other header option arguments are used in these cases.

Details

These functions encode the standard FITS Tan Gnomonic and Sine Orthographic projection systems
for solving an image WCS (covering most moden imaging and radio data). They do not deal with
higher order polynomial distortion terms.

Value

radec2xy Returns a two column matrix with columns x and y.

xy2radec Returns a two column matrix with columns RA and Dec (in degrees).

getimlim Returns a list of RA and Dec limits for the target image (‘RAlims’ and ‘Declims’,
both with 2 elements for lower and upper limits).

Author(s)

Aaron Robotham

References

http://mathworld.wolfram.com/GnomonicProjection.html http://mathworld.wolfram.com/OrthographicProjection.html

See Also

deg2dms, deg2hms, dms2deg, hms2deg

Examples

#A simple example:

radec2xy(10, 20)
xy2radec(radec2xy(10, 20))
xy2radec(radec2xy(10, 20, CTYPE1='RA--SIN', CTYPE2='DEC--SIN'),
CTYPE1='RA--SIN',CTYPE2='DEC--SIN')

#A more complicated example, where we transform and rotate large amounts:

54 sph2car

exdata_start=expand.grid(1:10,21:30)
plot(exdata_start)
exradec=radec2xy(exdata_start, CRVAL1=20, CRPIX1=100, CRVAL2=30, CRPIX2=130, CD1_1=0.1,
CD1_2=-0.05, CD2_1=0.05, CD2_2=0.1)
plot(exradec)
exdata_end=xy2radec(exradec, CRVAL1=20, CRPIX1=100, CRVAL2=30, CRPIX2=130, CD1_1=0.1,
CD1_2=-0.05, CD2_1=0.05, CD2_2=0.1)
plot(exdata_start,cex=2)
points(exdata_end,col='red')

#The residuals should be very small (in the noice of double precision arithmetic):

plot(density(exdata_start[,1]-exdata_end[,1]))
lines(density(exdata_start[,2]-exdata_end[,2]),col='red')

sph2car Transforms 3D spherical coordinates to cartesian coordinates

Description

Transforms 3D spherical coordinates to cartesian coordinates. The user can choose to input the
spherical coordinates in degrees or radians.

Usage

sph2car(long, lat, radius = 1, deg = TRUE)

Arguments

long Longitude values, can also contain a matrix of long, lat and radius (in that order).

lat Latitude values.

radius Radius values.

deg Specifies if input is in degrees (default) or radians.

Details

This is a low level function that is used for plot transformations.

Value

A data.frame is returned containing the columns x, y and z.

Author(s)

Aaron Robotham

See Also

coordmatch

sph2car 55

Examples

print(sph2car(45,0,sqrt(2),deg=TRUE))

Index

∗ NFW
cosNFW, 23

∗ area
skyarea, 50

∗ blackbody
planck, 40

∗ celestial
celestial-package, 2

∗ convert
deg2dms, 33
deg2hms, 34
dms2deg, 35
hms2deg, 39
IAUID, 40

∗ coordinates
Sky Coordinate Matching, 45

∗ coordinate
eq2gal, 36

∗ coord
Sky Coordinate Matching, 45

∗ cosmic
cosvar, 29

∗ cosmology
cosdist, 4
cosgrow, 10
coshalo, 16
cosmap, 19
cosNFW, 23
cosorb, 27
cosvol, 32

∗ cosmo
cosdist, 4
cosgrow, 10
coshalo, 16
cosmap, 19
cosNFW, 23
cosorb, 27
cosvol, 32

∗ data

Cosmology Reference Sets, 22
∗ distance

cosdist, 4
∗ fit

Cosmology Reference Sets, 22
∗ gnomonic

skyproj, 52
∗ growth

cosgrow, 10
∗ halo

coshalo, 16
cosNFW, 23
cosorb, 27

∗ mapping
cosmap, 19

∗ matching
Sky Coordinate Matching, 45

∗ match
Sky Coordinate Matching, 45

∗ package
celestial-package, 2

∗ pixscale
getpixscale, 37

∗ planck
planck, 40

∗ projection
skyproj, 52

∗ sample
cosvar, 29

∗ sky
skyarea, 50

∗ tan
skyproj, 52

∗ transform
car2sph, 3
sph2car, 54

∗ variance
cosvar, 29

∗ volume

56

INDEX 57

cosvol, 32

car2sph, 3, 37
celestial (celestial-package), 2
celestial-package, 2
coordmatch, 54
coordmatch (Sky Coordinate Matching), 45
coordmatchsing (Sky Coordinate

Matching), 45
cosdist, 4, 15, 18–21, 23, 25, 29, 33
cosdista (cosdist), 4
cosdistAngArea (cosdist), 4
cosdistAngDist (cosdist), 4
cosdistAngDist12 (cosdist), 4
cosdistAngDist12ang (cosdist), 4
cosdistAngScale (cosdist), 4
cosdistAngSize (cosdist), 4
cosdistCoDist (cosdist), 4
cosdistCoDist12ang (cosdist), 4
cosdistCoDistTran (cosdist), 4
cosdistCoVol (cosdist), 4
cosdistCrit, 24
cosdistCrit (cosdist), 4
cosdistDistMod (cosdist), 4
cosdistHubTime (cosdist), 4
cosdistLumDist (cosdist), 4
cosdistLumDist12ang (cosdist), 4
cosdistRelError (cosdist), 4
cosdistTravelTime (cosdist), 4
cosdistUniAgeAtz (cosdist), 4
cosdistUniAgeNow (cosdist), 4
cosdistz (cosdist), 4
cosdistzeff (cosdist), 4
cosdistzeff12ang (cosdist), 4
cosdistzem12ang (cosdist), 4
cosgrow, 5, 8, 10, 18–21, 23, 25, 29, 32, 33, 44
cosgrowa (cosgrow), 10
cosgrowCoVel (cosgrow), 10
cosgrowDecelq (cosgrow), 10
cosgrowDeltaVir, 17
cosgrowDeltaVir (cosgrow), 10
cosgrowEoSwDE (cosgrow), 10
cosgrowFactor (cosgrow), 10
cosgrowFactorApprox (cosgrow), 10
cosgrowH (cosgrow), 10
cosgrowOmegaK (cosgrow), 10
cosgrowOmegaL (cosgrow), 10
cosgrowOmegaM (cosgrow), 10
cosgrowOmegaR (cosgrow), 10

cosgrowPecVel (cosgrow), 10
cosgrowRate (cosgrow), 10
cosgrowRateApprox (cosgrow), 10
cosgrowRhoCrit (cosgrow), 10
cosgrowRhoDE (cosgrow), 10
cosgrowRhoMean (cosgrow), 10
cosgrowSigma8 (cosgrow), 10
cosgrowSigma8Approx (cosgrow), 10
cosgrowz (cosgrow), 10
coshalo, 15, 16, 25
coshaloMvirToRvir (coshalo), 16
coshaloMvirToSigma (coshalo), 16
coshaloRvirToMvir (coshalo), 16
coshaloRvirToSigma (coshalo), 16
coshaloSigmaToMvir (coshalo), 16
coshaloSigmaToRvir (coshalo), 16
coshaloSigmaToTvir (coshalo), 16
cosmap, 8, 15, 18, 19, 23, 25, 29, 33
cosmapfunc (cosmap), 19
cosmapval (cosmap), 19
Cosmology Reference Sets, 22
cosNFW, 8, 18, 23
cosNFWduffym2c (cosNFW), 23
cosNFWgamma (cosNFW), 23
cosNFWmass_c (cosNFW), 23
cosNFWmass_Rmax (cosNFW), 23
cosNFWsigma (cosNFW), 23
cosNFWsigma_mean (cosNFW), 23
cosNFWvcirc (cosNFW), 23
cosNFWvesc (cosNFW), 23
cosorb, 27
cosorbFreeFall (cosorb), 27
cosorbRocheRad (cosorb), 27
cosorbRocheSize (cosorb), 27
cosorbVisViva (cosorb), 27
cosplanck (planck), 40
cosplanckCMBTemp (planck), 40
cosplanckLawEnFreq (planck), 40
cosplanckLawEnWave (planck), 40
cosplanckLawRadFreq (planck), 40
cosplanckLawRadFreqN (planck), 40
cosplanckLawRadPhotEnAv (planck), 40
cosplanckLawRadPhotN (planck), 40
cosplanckLawRadWave (planck), 40
cosplanckLawRadWaveN (planck), 40
cosplanckPeakFreq (planck), 40
cosplanckPeakWave (planck), 40
cosplanckSBLawEn (planck), 40

58 INDEX

cosplanckSBLawRad (planck), 40
cosplanckSBLawRad_sr (planck), 40
cosref, 5, 8, 12, 15, 17, 20, 25, 32
cosref (Cosmology Reference Sets), 22
cosvar, 29
cosvararea (cosvar), 29
cosvarcar (cosvar), 29
cosvarsph (cosvar), 29
cosvol, 8, 15, 18, 21, 23, 25, 29–31, 32, 51

deg2dms, 33, 36, 53
deg2hms, 34, 39, 53
dms2deg, 30, 34, 35, 46, 49, 51, 53

eq2gal, 36

formatC, 34, 35

gal2eq (eq2gal), 36
getimlim (skyproj), 52
getpixscale, 37
gnomonic (skyproj), 52
group_graph (Sky Coordinate Matching),

45
group_links (Sky Coordinate Matching),

45

hms2deg, 30, 35, 39, 46, 49, 51, 53

IAUID, 40
internalclean (Sky Coordinate

Matching), 45

jitter, 47

kinetic_part (cosorb), 27

orthographic (skyproj), 52

planck, 40
potential_part (cosorb), 27

radec2xy (skyproj), 52

sinproj (skyproj), 52
Sky Coordinate Matching, 45
skyarea, 30, 31, 33, 50
skyproj, 52
sph2car, 3, 37, 49, 54

tanproj (skyproj), 52

xy2radec, 38
xy2radec (skyproj), 52

	celestial-package
	car2sph
	cosdist
	cosgrow
	coshalo
	cosmap
	Cosmology Reference Sets
	cosNFW
	cosorb
	cosvar
	cosvol
	deg2dms
	deg2hms
	dms2deg
	eq2gal
	getpixscale
	hms2deg
	IAUID
	planck
	Sky Coordinate Matching
	skyarea
	skyproj
	sph2car
	Index

